• 제목/요약/키워드: Production scheduling

검색결과 450건 처리시간 0.026초

디스패칭 룰 기반의 Advanced Planning and Scheduling (APS) 시스템 활용 사례연구 (A Case Study on Application of Dispatching Rule-Based Advanced Planning and Scheduling (APS) System)

  • 이재용;신문수
    • 산업경영시스템학회지
    • /
    • 제38권3호
    • /
    • pp.78-86
    • /
    • 2015
  • Up-to-date business environment for manufacturers is very complex and rapidly changing. In other words, companies are facing a variety of changes, such as diversifying customer requirements, shortening product life cycles, and switching to small quantity batch production. In this situation, the companies are introducing the concept of JIT (just-in-time) to solve the problem of on-time production and on-time delivery for survival. Though many companies have introduced ERP (enterprise resource planning) systems and MRP (material requirement planning) systems, the performance of these systems seems to fall short of expectations. In this paper, the case study on introducing an APS (advanced planning and scheduling) system based on dispatching rules to a machining company and on finding a method to establish an efficient production schedule is presented. The case company has trouble creating an effective production plan and schedule, even though it is equipped with an MRP-based ERP system. The APS system is applied to CNC (computer numerical control) machines, which are key machines of the case company. The overall progress of this research is as follows. First, we collect and analyze the master data on individual products and processes of the case company in order to build a production scheduling model. Second, we perform a pre-allocation simulation based on dispatching rules in order to calculate the priority of each order. Third, we perform a set of production simulations applying the priority value in order to evaluate production lead time and tardiness of pre-defined dispatching rules. Finally, we select the optimal dispatching rule suitable for work situation of the case company. As a result, an improved production schedule leads to an increase in production and reduced production lead time.

FAB-Wide 스케줄링을 통한 반도체 연구라인의 운용 최적화 (The Operational Optimization of Semiconductor Research and Development Fabs by FAB-wide Scheduling)

  • 김영호;이지형;선동석
    • 전기학회논문지
    • /
    • 제57권4호
    • /
    • pp.692-699
    • /
    • 2008
  • Semiconductor research and development(R&D) fabs are very different than production fabs in many ways such as the scales of production, job priority, production methods, and performance measures. Efficient operations of R&D fabs are very important to the development of new product, process stability, high yield, and ultimately company competitiveness. This paper proposes the fab-wide scheduling method for operational optimization of the R&D fabs. Most scheduling systems of semiconductor fabs have only focused on maximizing throughput of each separated areas without considering WIP(works in process) flows of entire fab. In this paper, we proposes the a fab-wide scheduling system which schedules all lots to entire fab equipment at once. We develop the MIP(mixed integer programing) model which allocates the lots to production equipment considering many constraints of all processes and the CP(constraint programming) model which determines the sequences of the lots in the production equipment. The proposed FAB-wide scheduling model is applied to the newly constructed R&D fab. As a result, we have accomplished the system based automated job reservation, decrease of the hot lot delay, increase of the queue time satisfaction, the high throughput by maximizing the batch sizes, decrease of the WIP TAT(Turn Around Time).

국내 주요 산업별 스케줄링 기법의 연구동향 (Research Trends of Scheduling Techniques for Domestic Major Industries)

  • 이재용;신문수
    • 산업경영시스템학회지
    • /
    • 제41권1호
    • /
    • pp.59-69
    • /
    • 2018
  • The up-to-date business environment for Korean manufacturers is very complex and rapidly changing. Especially, the companies have faced with various changes derived from small quantity batch production, diversification of customer demands, and short life cycles of products. Consequently, the Korean manufacturing companies are in need of more efficient production planning and scheduling techniques. In this paper, the research trend of scheduling techniques is investigated to provide relevant information to researchers in this field. Furthermore, some implications for future researches are presented regarding literatures published in Korea over the last 10 years. This paper presents an entire investigation into Korean research works on scheduling (2,569 papers) that are published from 2007 to 2016. Especially, detailed analysis was carried out in the following three industry : 1) semiconductor, 2) shipbuilding and 3) automobile. In this paper, approaches to scheduling presented in the literature are categorized into the following three categories : 1) application, 2) algorithm, and 3) simulation modeling. First, in the semiconductor industry, scheduling techniques related to semiconductor cleaning processes, photolithography processes, chemical processes, transport and transport equipment have been found to be dominant. Second, the shipbuilding industry is focused on assembly processes, transporter, crane and various existing production management system. On the other hand, the scheduling research of the automobile industry is mainly focused on the vehicle movement routing and procurement supply-chain planning algorithm in terms of logistics. The conclusion of this study are expected to provide many implications for various types of academic and practical follow-up studies related to scheduling in consideration of main characteristics of semiconductor, shipbuilding and automobile industries.

Development of integrated scheduling system for virtual manufacturing system

  • Roh, Kyoungyun;Noh, Sangdo;Lee, Kyoil
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 Proceedings of the Korea Automatic Control Conference, 11th (KACC); Pohang, Korea; 24-26 Oct. 1996
    • /
    • pp.354-357
    • /
    • 1996
  • Virtual Manufacturing System(VMS) is an integrated computer based model which has physical, logical schema and behavior of real manufacturing system. In this paper, an integrated scheduling system is developed to simulate and control a Virtual Factory. A workflow model is constructed to define and analyze the structure of a VMS. On-line dynamic dispatching system is developed using MultiPass algorithm and scheduling system considering dynamic CAPP is carried out. Integrated scheduling system developed in this paper reduces the discrepancies between virtual model and real manufacturing system, and control of real shop floor is possible.

  • PDF

Integrated scheduling model for PVC process

  • Kang, Min-Gu;Moon, Sung-Deuk;Kang, Jin-su;Park, Sun-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1804-1809
    • /
    • 2003
  • In a large-scale chemical plant, there are scheduling problems in inventory and packing process although production process is stabilized. The profit of the plant is restricted by these problems. In order to improve these problems, integrated scheduling model, which is concerned with whole processes from production to shipment, has been developed in this paper. In this model, decision variables are production sequence, silo allocation, amounts of bulk shipment and packing amounts. In case of a real plant, it is hard to solve by deterministic methods because there are too many decision variables to solve. In this paper, genetic algorithm is presented to solve a PVC process scheduling model within an hour with PCs.

  • PDF

장치 산업에서 로트 크기와 작업 순서 결정을 위한 연구 (A Study on the Lot Sizing and Scheduling in Process Industries)

  • 이호일;김만식
    • 산업경영시스템학회지
    • /
    • 제12권19호
    • /
    • pp.79-88
    • /
    • 1989
  • This characteristics of process industries are high capital intensity, relatively long and sequence dependent setup times, and extremely limited capacity resources. The lot sizing, sequencing and limited capacity resources factors must he considered for production scheduling in these industries. This paper presents a mixed integer programming model for production scheduling. The economic trade offs between capacitated lot sizing flow shop scheduling and sequence dependent setup times also be compared with SMITH-DANIELS's model. As a results, it is shown that this paper has lower total cost, more efficient throughput than SMITH-DANIELS's model.

  • PDF

실시간 제어가 가능한 일정 계획 시스템 개발 (Development of a production scheduling system for the real time controlled manufacturing system)

  • 이철수;배상윤;이강주
    • 경영과학
    • /
    • 제10권2호
    • /
    • pp.61-77
    • /
    • 1993
  • This paper involves a study of developing the production scheduling system in a general job shop type mechanical factory. We consider realistic situations in the job-shop environments, such as alternative machines for operation, the new kinds of processes, the machining center with the plural pallet, the operational situation of each machine during the scheduling period, occurings of urgent orders and machine breakdowns. We also propose the methodology of re-schedule. It is very fast and acceptable for real time production control system. These all functions are implemented on IBM PC and program source is written in PASCAL language.

  • PDF

시뮬레이션을 이용한 단공정작업의 스케줄링에 관한 연구 (A Study on the Dispatching Rules of One-process Job Using Computer Simulation)

  • 이기영;김영민
    • 대한안전경영과학회지
    • /
    • 제2권2호
    • /
    • pp.85-94
    • /
    • 2000
  • This paper deals with the selection of a proper dispatching rule for an one-process Job scheduling that follows a particular distribution of an order production. That is, it makes a distribution on an order per unit period and applies to simulation model that uses it. This study consists of two purposes either seeks adequately production scheduling using priority rule or seeks extension of the facilities that increase current production efficiency through computer simulation in scheduling.

  • PDF

건설기계 유압밸브 생산을 위한 일정계획 시스템 개발 (Development of Scheduling System for Production of the Hydraulic Control Valve of Construction Equipment)

  • 김기동;이보헌
    • 산업기술연구
    • /
    • 제27권A호
    • /
    • pp.61-67
    • /
    • 2007
  • The construction machine is the composite machine assembled by about 30,000 parts. Excavator, one kind of a construction machine, plays the leading role for export of construction equipment. It is generally impossible to produce all of the items within one company. Especially the supply of hydraulic control valves, one of the core part of the construction equipment, depends on the import heavily. So it is important to make an efficient production plan of hydraulic control valves in the company. The most important thing for the production scheduling of a hydraulic control valve is to make production schedule keeping the start date for assembly line for an excavator and to make minimization of the stock level. The production plan of hydraulic control valve includes the decision of the quantity supplied by subcontractor. This paper presents a scheme for a scheduling system of the hydraulic control valve considering the schedule of the assembly line for excavator production. This paper provides a methodology, which can make a plan of supply and production and generate a detailed schedule for daily production.

  • PDF

주문생산 방식하에서 ERP를 응용한 일정계획 수립 사례 연구 (Production Scheduling employing ERP in the make-to-order manufacturing system)

  • 이순구;이영훈
    • 산업공학
    • /
    • 제12권3호
    • /
    • pp.424-436
    • /
    • 1999
  • Due to environmental change in market, delivery satisfaction to customers and reduction of lead time are critical in the make-to-order manufacturing system. A case of production scheduling process restructuring is studied for one company which employed ERP system. Based on the standard module ERP package provided, they modified and added several functions for their specific processes, and implemented it in production scheduling. The ratio of delivery satisfaction has been improved from 51.1% to 60.8%, and manufacturing lead time has been reduced from 43 days to 30 days in average during 10 months. Moreover, they achieved several side effects such as real time production scheduling and workload analysis, information sharing over all departments, and improving flexibility in receiving orders.

  • PDF