• Title/Summary/Keyword: Production potential.

Search Result 4,749, Processing Time 0.028 seconds

Inhibitory effects of pinosylvin on prostaglandin E$_2$ and nitric oxide production in lipopolysaccharide-stimulated mouse macrophage cells

  • Park, Eun-Jung;Min, Hye-Young;Kim, Moon-Sun;Pyee, Jae-Ho;Ahn, Yong-Hyun;Lee, Sang-Kook
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-2
    • /
    • pp.194.2-194.2
    • /
    • 2003
  • The inhibitors of prostaglandin biosynthesis and nitric oxide production by corresponding inducible isozyme have been considered as potential anti-inflammatory and cancer chemopreventive agents. In our continuous search for cancer chemopreventive agents from natural products, we have evaluated the inhibitory potential of PGE$_2$ and NO production in lipopolysaccharide (LPS)-induced mouse macrophage RAW 264.7 cells. As a result, pinosylvin (3,5-dihydroxy-trans-stilbene), a stilbenoid, mainly found from the heartwood and leaves of the Pinus sylvestris, showed potential inhibitory activity of LPS-induced PGE$_2$ and NO production in a dose-dependent manner. (omitted)

  • PDF

음식물 쓰레기와 하수 슬러지의 생물학적 수소 발효에 미치는 VS 농도와 혼합비의 영향 (Effects of VS concentration and mixing ratio on hydrogen fermentation of food waste and sewage sludge)

  • 김상현;한선기;신항식
    • 유기물자원화
    • /
    • 제11권4호
    • /
    • pp.97-104
    • /
    • 2003
  • 다양한 VS 농도(0.5-5.0%) 및 혼합비(0:100-100:0, VS 기준)의 음식물 쓰레기와 하수 슬러지를 이용하여 수소 발효 회분식 실험을 수행하였다. 누적 수소 발생곡선을 통해 수소 생성 잠재량과 수소 생성 속도를 구하였으며 표면분석법을 이용하여 각각에 대한 최적 조건과 90% 용인 조건을 제시하였다. 수행된 모든 VS 농도에서 음식물 쓰레기의 수소 생성 잠재량은 하수 슬러지보다 높았다. 그러나 하수 슬러지를 13~19% 혼합하였을 경우에 수소 생성 잠재량이 증가하는 현상이 발견되었다. 이는 하수 슬러지의 첨가로 인해 수소 생성 미생물의 생장에 필요한 단백질이 충분히 공급되어 발생하는 현상으로 사료된다. 최대 비 수소생성 잠재량은 122.9 mL/g $carbohydrate_{added}-COD$로 혼합비 87:13(음식물 쓰레기: 하수 슬러지), VS 3%에서 관찰되었다. 최대 수소 생성 속도의 경우 VS와 음식물쓰레기 분율이 높을수록 높은 값을 나타내었으며 최대값은 111.2mL $H_2/g$ VSS/h였다. 이로 미루어 볼 때, 음식물쓰레기와 하수슬러지는 수소 생성에 있어 각각 주 기질과 보조 기질로 활용되기에 적합한 것으로 판단된다.

  • PDF

Effect of Electrochemical Redox Reaction on Growth and Metabolism of Saccharomyces cerevisiae as an Environmental Factor

  • Na, Byung-Kwan;Hwang, Tae-Sik;Lee, Sung-Hun;Ahn, Dae-Hee;Park, Doo-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권3호
    • /
    • pp.445-453
    • /
    • 2007
  • The effect of an electrochemically generated oxidation-reduction potential and electric pulse on ethanol production and growth of Saccharomyces cerevisiae ATCC 26603 was experimented and compared with effects of electron mediators (neutral red, benzyl viologen, and thionine), chemical oxidants (hydrogen peroxide and hypochlorite), chemical reductants (sulfite and nitrite), oxygen, and hydrogen. The oxidation (anodic) and reduction (cathodic) potential and electric pulse activated ethanol production and growth, and changed the total soluble protein pattern of the test strain. Neutral red electrochemically reduced activated ethanol production and growth of the test strain, but benzyl viologen and thionine did not. Nitrite inhibited ethanol production but did not influence growth of the test strain. Hydrogen peroxide, hypochlorite, and sulfite did not influence ethanol production and growth of the test strain. Hydrogen and oxygen also did not influence the growth and ethanol production. It shows that the test strain may perceive electrochemically generated oxidation-reduction potential and electric pulse as an environmental factor.

Estimating North Korea's nuclear capabilities: Insights from a study on tritium production in a 5MWe graphite-moderated reactor

  • Sungmin Yang;Manseok Lee;Danwoo Ko;Gyunyoung Heo;Changwoo Kang;Seung Min Woo
    • Nuclear Engineering and Technology
    • /
    • 제56권7호
    • /
    • pp.2666-2675
    • /
    • 2024
  • This study explores the potential for tritium production in North Korea's 5MWe graphite-moderated reactor, a facility primarily associated with nuclear weapons material production. While existing research on these reactors has largely centered on plutonium, our focus shifts to tritium, a crucial element in boosted fission bombs. Utilizing the MCNP6 code for simulations, the results estimate that North Korea can possibly produce approximately 7-12 g of tritium annually. This translates to the potential production of 1-3 boosted fission bombs each year. By incorporating tritium production into assessments of North Korea's nuclear capabilities, our methodology provides insights into the dynamics of the country's nuclear force, revealing a more diversified and complex composition than previously assumed. The findings significantly aid policymakers, regulatory bodies, and researchers in comprehending potential proliferation risks associated with graphite-moderated reactors and in developing strategies to address the nuclear threat emanating from North Korea.

Integrated Tree Crops-ruminants Systems in South East Asia: Advances in Productivity Enhancement and Environmental Sustainability

  • Devendra, C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제24권5호
    • /
    • pp.587-602
    • /
    • 2011
  • Improved efficiency in the use of natural resources, pragmatic production systems and environmental sustainability, justified by the need for improved land use systems and increased productivity, are discussed in the context of Asian integrated systems, diversification, and issues of sustainability. The importance of these are reflected by serious inadequate animal protein production throughout Asia, where available supplies cannot match current and projected human requirements up to 2050. Among the ruminant production systems, integrated tree crops-ruminant production systems are grossly underestimated and merit emphasis and expansion. As an example, integrated oil palm- based system is an important pathway for integration with ruminants (buffaloes, cattle, goats and sheep), and provides the entry point for development. The importance and benefits of integrated systems are discussed, involving animals with annual and perennial tree crops, integration with aquaculture, the significance of crop-animal interactions, stratification of the systems, production options, improved use of forages and legumes, potential for enhanced productivity, implications for improved livelihoods of the rural poor and the stability of farm households. The advances in research and development in South East Asia highlight demonstrable increased productivity from animals and meat offtakes, value addition to the oil palm crop, sustainable development, and distinct economic impacts. The results from 12 out of a total of 24 case studies concerning oil palm over the past three decades showed increased yield of 0.49-3.52 mt of fresh fruit bunches (FFB)/ha/yr; increased income by about 30%; savings in weeding costs by 47- 60% equivalent to 21-62 RM/ha/yr; and an internal rate of return of 19% based on actual field data. The results provide important socio-economic benefits for resource-poor small farmers. Potential increased offtakes and additional income exist with the integration of goats. Additionally, the potential for carbon sequestration with tree crops is an advantage. The reasons for low adoption of the syatems are poor awareness of the potential of integrated systems, resistance by the crop- oriented plantation sector, and inadequate technology application. Promoting wider expansion and adoption of the systems in the future is linked directly with coherent policy, institutional commitment, increased investments, private sector involvement, and a stimulus package of incentives.

폐식용유 재활용 제품의 환경성 평가 (Environmental Impact Evaluation of the Waste Cooking Oil Recycling Products)

  • 김태석;김동규;정용현
    • 수산해양교육연구
    • /
    • 제27권2호
    • /
    • pp.516-525
    • /
    • 2015
  • In this study, Life Cycle Assessment(LCA) was applied to the production processes of waste cooking oil recycling products. Recycling products as defined in the Law of Saving of Resources and Recycling Promotion are biodiesel and soap. Weighting result of biodiesel production process showed that the most significant impact potential was abiotic resource depletion(84.17%) followed by global warming(13.93%). In the case of the soap, the most significant impact potential was also abiotic resource depletion(58.59%) followed by global warming(33.71%). In terms of the whole system of the biodiesel production process, methanol showed the largest environmental impact potential(87.35%). While in the case of the soap, sodium chloride showed the largest environmental impact potential(99.99%). This study suggests that there should be improvement of the methanol recovery system in the biodiesel production process and also appropriate use of the major environmental impact materials in both processes.

Suppressive effects of pinosylvin on prostaglandin E$_2$and nitric oxide production in lipopolysaccharide-stimulated RAW 264.7 cells

  • Park, Eun-Jung;Min, Hye-Young;Kim, Moon-Sun;Pyee, Jae-Ho;Ahn, Yong-Hyun;Lee, Sang-Kook
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2003년도 Annual Meeting of KSAP : International Symposium on Pharmaceutical and Biomedical Sciences on Obesity
    • /
    • pp.102-102
    • /
    • 2003
  • The inhibitors of prostaglandin biosynthesis and nitric oxide production by corresponding inducible isozyme have been considered as potential anti-inflammatory and cancer chemopreventive agents. In our continuous search for cancer chemopreventive agents from natural products, we have evaluated the inhibitory potential of PGE$_2$and NO production in lipopolysaccharide (LPS)-induced mouse macrophage RAW264.7 cells. As a result, pinosylvin (3,5-dihydroxy-trans-stilbene), a stilbenoid, mainly found from the heartwood and leaves of the Pinus sylvestris, showed potential inhibitory activity of LPS-induced PGE$_2$and NO production in a dose-dependent manner. Pinosylvin also suppressed the LPS-induced iNOS protein expression. Further study revealed that pinosylvin exhibited antioxidant activity by the DPPH free radical scavenging potential and inhibitory effect of xanthine oxidase activity. In addition, pinosylvin inhibited COX -2 overexpressed human colon cancer cell (HT-29) growth in a time- and dose-dependent manner. These findings suggest that pinosylvin might be a promising candidate for developing cancer chemopreventive agent.

  • PDF

다이옥신이 미토콘드리아 내막의 전위차 변화 및 ROS 생성에 미치는 영향 (Effect of Dioxin on the Change of Mitochondrial Inner Membrane Potential and the Induction of ROS)

  • 조일영;신윤용
    • Environmental Analysis Health and Toxicology
    • /
    • 제24권1호
    • /
    • pp.33-41
    • /
    • 2009
  • Among the toxicants in the environment dioxin-like compounds, including TCDD(2,3,7,8-Tetrachlorodibenzo-p-Dioxin), are well known as carcinogen and teratogen. TCDD the most toxic of these compounds, may result in a wide variety of adverse health effects in humans and environment, including carconogenesis, hepatotoxicity, teratogenesis, and immunotoxicity. Also TCDD increases superoxide, peroxide radicals and induces oxidative stress that leads to breakage of DNA single-strand and mitochondrial dysfunction. Recently, there have been reports that persistent organic pollutants(POPs) may be causing metabolic disease through mitochondrial toxicity. In order to examine if dioxin brings about toxicity on mitochondria directly, we measured the change of the mitochondrial membrane potential after exposure to TCDD using JC-1 dye. After short time exposure of dioxin, mitochondrial depolarization was observed but it recovered to the control level immediately. This TCDD effect on mitochondrial membrane potential was not correlated either to the production of reactive oxygen species(ROS) or extracellular $Ca^{2+}$ by TCDD. Less than 2 hours exposure of TCDD did not show any change in ROS production but 0.25 nM TCDD for 48 hours or 0.5 nM TCDD for 12 hours exposure did increase in ROS production. Under these conditions of ROS production by TCDD, no changes in the mitochondrial membrane potential by TCDD was observed.

SCBF 장치에서 이온전류에 대한 포텐셜 우물 구조의 영향 (Effect of Potential Well Structure on Ion Current in SCBF Device)

  • 주흥진;박정호;고광철
    • 한국전기전자재료학회논문지
    • /
    • 제20권5호
    • /
    • pp.471-477
    • /
    • 2007
  • SCBF(Spherically Convergent Beam Fusion) device has been studied as a neutron source. Neutron production rate is a most important factor for the application of SCBF device and is proportional to the square of the ion current[1]. It is regarded generally that some correlations between the potential well structure and the ion current exist. In this paper, the ion current and potential distribution were calculated in a variety of grid cathode geometries using FEM-FCT method. Single potential well structure was certified inside the grid cathode. The deeper the potential well became, the higher the ion current due to the high electric field near the grid cathode became.

Prioritizing the locations for hydrogen production using a hybrid wind-solar system: A case study

  • Mostafaeipour, Ali;Jooyandeh, Erfan
    • Advances in Energy Research
    • /
    • 제5권2호
    • /
    • pp.107-128
    • /
    • 2017
  • Energy is a major component of almost all economic, production, and service activities, and rapid population growth, urbanization and industrialization have led to ever growing demand for energy. Limited energy resources and increasingly evident environmental effects of fossil fuel consumption has led to a growing awareness about the importance of further use of renewable energy sources in the countries energy portfolio. Renewable hydrogen production is a convenient method for storage of unstable renewable energy sources such as wind and solar energy for use in other place or time. In this study, suitability of 25 cities located in Iran's western region for renewable hydrogen production are evaluated by multi-criteria decision making techniques including TOPSIS, VIKOR, ELECTRE, SAW, Fuzzy TOPSIS, and also hybrid ranking techniques. The choice of suitable location for the centralized renewable hydrogen production is associated with various technical, economic, social, geographic, and political criteria. This paper describes the criteria affecting the hydrogen production potential in the study region. Determined criteria are weighted with Shannon entropy method, and Angstrom model and wind power model are used to estimate respectively the solar and wind energy production potential in each city and each month. Assuming the use of proton exchange membrane electrolyzer for hydrogen production, the renewable hydrogen production potential of each city is then estimated based on the obtained wind and solar energy generation potentials. The rankings obtained with MCDMs show that Kermanshah is the best option for renewable hydrogen production, and evaluation of renewable hydrogen production capacities show that Gilangharb has the highest capacity among the studied cities.