• 제목/요약/키워드: Production of Alternative Materials

검색결과 204건 처리시간 0.027초

Apparent digestibility of dry matter, organic matter, protein and energy of native Peruvian feedstuffs in juvenile rainbow trout (Oncorhynchus mykiss)

  • Ortiz-Chura, Abimael;Pari-Puma, Ruth Milagro;Huanca, Francisco Halley Rodriguez;Ceron-Cucchi, Maria Esperanza;Aranibar, Marcelino Jorge Aranibar
    • Fisheries and Aquatic Sciences
    • /
    • 제21권11호
    • /
    • pp.32.1-32.7
    • /
    • 2018
  • Trout production is a growing activity in recent years but requires new alternative sources of feed to be sustainable over time. The objective of this research was to determine the apparent digestibility coefficient (ADC) of dry matter (DM), organic matter (OM), crude protein (CP) and digestible energy (DE) of $ka{\tilde{n}}iwa$ (Chenopodium pallidicaule Aellen), kiwicha (Amaranthus caudatus L), quinoa (Chenopodium quinoa Willd), beans (Phaseolus vulgaris L.), sacha inchi, (Plukenetia volubilis L) and jumbo squid (Dosidicus gigas) meal in juvenile rainbow trout. The experimental diets were composed of a 70% basal diet and 30% of any raw materials. The ADC was determined by the indirect method using insoluble ash as a non-digestible marker. Jumbo squid, sacha inchi and quinoa showed the highest values of ADC (%) of DM (84.5, 73.5 and 69.7), OM (89.1, 78.4 and 72.9), CP (93.2, 98.0 and 90.3), and DE (4.57, 4.15 and 2.95 Mcal/kg DM), respectively. The ADC values for $ka{\tilde{n}}iwa$, kiwicha and bean were significantly lower. In conclusion, quinoa meal and jumbo squid meal have an acceptable digestibility but sacha inchi meal is a potential alternative for rainbow trout feeding in the future.

건축용 석재개발에 따른 환경 부하 저감 방안에 관한 연구 - 포천 아트밸리를 중심으로 - (A study on methods to reduce environmental load due to stone development- Focusing on Pocheon Art Valley -)

  • 서명석
    • 문화기술의 융합
    • /
    • 제9권1호
    • /
    • pp.711-716
    • /
    • 2023
  • 건축물 신축공사 및 리모델링 공사의 고급화 전략으로 많은 양의 석재가 필요하며 콘크리트의 생산에 필요한 강모래 강자갈의 부족으로 많은 석산에서 골재를 채취하여야 하는 실정이다. 본 연구는 건축용 석재개발의 사례를 살펴보고 지역의 주민 의식조사를 실시하고 분석하여 주민들의 석산개발에 대한 생각을 알아보고 석산개발에 따른 황폐화의 대안으로 그 지역을 개발하여 효율적인 자원으로 재활용할 수 있는 방안을 제시하는데 기초 연구를 진행하였다. 그 결과. 지역주민들은 채석장 사용에 대하여 많은 반감을 가지고 있으므로, 거주민의 지역과는 거리가 있는 지역을 채석장으로 활용할 필요가 있으며, 기존에 황폐화된 지역은 포천 아트벨리와 같이 그 지역을 잘 연구하여 그 지역 특성에 맞는 방향으로 복원 및 개발을 추진하는 것이 바람직하다는 결론을 얻었다.

3D 프린팅 기술과 미래식품산업의 응용 (3D printing technology and its applications in the future food industry: a review)

  • 윤형선;이미현;김현연;김수진;이소윤;김연비;유영선;이진규
    • 식품과학과 산업
    • /
    • 제49권4호
    • /
    • pp.64-69
    • /
    • 2016
  • The potentialities of 3D printing technology are discussed from technical and research-oriented perspectives for industrial manufacturing of a variety of food products. Currently, 3D printing technology has advanced to enable us to process or cook innovative foods. However, food-based materials for 3D printing are still limited in terms of eating qualities, nutritional values and functionality as well as industrial production. Therefore, this uprising issue on alternative food processing techniques especially focused on the exploration of new food materials combined with these 3D printing technologies needs to be re-spotlighted, and then solved to pave the way to this innovative and sensational area of investigation with more accessibility. In this review, previous research work and industrial applications conducted by frontier research groups in this field are covered, then to open discussion for future research on the 3D printing of food.

초희박 GDI엔진에서 다단점화에 의한 연소 및 배기 특성 (The Effect of Multi-ignition Strategy on the Combustion and Emission Characteristics in a Ultra Lean Burn GDI Engine)

  • 박철웅;김성대;김홍석;오희창;배충식
    • 한국자동차공학회논문집
    • /
    • 제20권3호
    • /
    • pp.106-112
    • /
    • 2012
  • Since air pollution problem by emissions from automotive vehicles has become social issues, lean-burn gasoline direct injection (GDI) engine is focused as an alternative to meet the requirement of reinforced emission regulation and improved fuel consumption. Spray-guided type DI combustion is promising technology, which characterized by the centrally mounted injector and closely positioned spark plug, since stable lean combustion can be realized even at ultra-lean mixture condition. In the present study, the effect of multi-ignition with developed charge coil on combustion and emission characteristics was investigated in optical accessible single cylinder engine. In order to fully understand the in-cylinder phenomena and the mechanisms of emission production, optical diagnostics, such as flame visualization was also carried out at frequently using operating condition. Multi-ignition is effective to improve fuel economy but increase NOx emission at flammability limit.

Searching for the viability of using thorium-based accident-tolerant fuel for VVER-1200

  • Mohamed Y.M. Mohsen;Mohamed A.E. Abdel-Rahman;Ahmed Omar;Nassar Alnassar;A. Abdelghafar Galahom
    • Nuclear Engineering and Technology
    • /
    • 제56권1호
    • /
    • pp.167-179
    • /
    • 2024
  • This study explores the feasibility of employing (U, Th)-based accident tolerant fuels (ATFs), specifically (0.8UO2, 0.2ThO2), (0.8UN, 0.2ThN), and (0.8UC, 0.2ThC). The investigation assesses the overall performance of these proposed fuel materials in comparison to the conventional UO2, focusing on deep neutronic and thermal-hydraulic (Th) analyses. Neutronic analysis utilized the MCNPX code, while COMSOL Multiphysics was employed for thermal-hydraulic analysis. The primary objective of this research is to overcome the limitations associated with traditional UO2 fuel by exploring alternative fuel materials that offer advantages in terms of abundance and potential improvements in performance and safety. Given the limited abundance of UO2, long-term sustainable nuclear energy production faces challenges. From a neutronic standpoint, the U-Th based fuels demonstrated remarkable fuel cycle lengths, except (0.8UN, 0.2ThN), which exhibited the minimum fuel cycle length and, consequently, the lowest fuel burn-up. Regarding thermal-hydraulic performance, (0.8UN, 0.2ThN) exhibited outstanding performance with significant margins against fuel melting compared to the other materials. Overall, when considering the integrated performance, the most favourable results were obtained with the use of the (0.8UC, 0.2ThC) fuel configurations. This study contributes valuable insights into the potential benefits of (U, Th)-based ATFs as a promising avenue for enhanced nuclear fuel performance.

생물공학에 기반한 천연 바닐린 생산에 관한 최근 연구 (Recent Advances in the Biotechnological Production of Natural Vanillin)

  • 김현송;김영옥;이진호
    • 생명과학회지
    • /
    • 제31권11호
    • /
    • pp.1046-1055
    • /
    • 2021
  • 바닐린은 천연 바닐라의 주요 향미 화합물이며 식품, 음료, 향수, 제약 산업 및 기타 응용 분야에서 광범위하게 사용된다. 바닐린은 화학합성법, 바닐라 꼬투리를 이용한 식물추출법, 천연 전구체를 이용한 생물전환법, 그리고 포도당을 사용한 직접 발효법에 의해 생산될 수 있다. 현재 상업적으로 이용 가능한 대부분의 바닐린은 큐어링 공정을 거쳐 얻어진 바닐라 꼬투리에서 추출하는 방법과 구아이아콜과 글리옥실산을 원료로 사용하여 화학적 합성법에 의해 생산된다. 환경 문제, 건강 준수, 천연 원료에 대한 선호, 천연 바닐라의 제한된 공급 및 치솟는 가격으로 인해 생명 공학 기반 바닐린 생산은 유망한 대안으로 간주된다. 페룰산, 유제놀, 이소유제놀, 리그닌을 포함한 여러 천연 전구체를 대사하고 바닐린을 축적할 수 있는 많은 미생물이 선별되고 평가되면서, 상업적으로 실행 가능한 생산 기술 개발을 위해 많은 노력을 기울였다. 본 총설은 이러한 천연 전구체를 사용하여 천연 바닐린의 생물공학적 생산에 대한 최근의 발전을 간략하게 설명한다. 또한, 포도당에서 바닐린의 새로운 생합성 경로를 기반으로 재생 가능한 탄소원에서 천연 바닐린을 생산하기 위한 최신의 개발 전략과 생산 농도를 높이는 데 발생하는 문제를 극복하기 위한 적절한 해결방안을 소개한다.

Production of concrete paving blocks using electroplating waste - Evaluation of concrete properties and solidification/stabilization of waste

  • Sgorlon, Juliana Guerra;Tavares, Celia Regina Granhen;Franco, Janaina de Melo
    • Advances in environmental research
    • /
    • 제3권4호
    • /
    • pp.337-353
    • /
    • 2014
  • The determination of the effectiveness of the immobilization of blasting dust (waste generated in galvanic activities) in cement matrix, as well of mechanical, physical and microstructural properties of concrete paving blocks produced with partial replacement of cement was the objective of this work. The results showed that blasting dust has high percentage of silica in the composition and very fine particle size, characteristics that qualify it for replacement of cement in manufacturing concrete blocks. The replacement of Portland cement by up to 5% residues did not cause a significant loss in compressive strength nor increase in water absorption of the blocks. Chemical tests indicated that there is no problem of leaching or solubilization of contaminants to the environment during the useful life of the concrete blocks, since the solidification/stabilization process led to the immobilization of waste in the cement mass. Therefore, the use of blasting dust in the manufacture of concrete paving blocks is promising, thus being not only an alternative for proper disposal of such waste as well as a possibility of saving raw materials used in the construction industry.

Application of Biocathodes in Microbial Fuel Cells: Opportunities and Challenges

  • Gurung, Anup;Oh, Sang-Eun
    • 한국토양비료학회지
    • /
    • 제45권3호
    • /
    • pp.410-420
    • /
    • 2012
  • The heavy reliance on fossil fuels, especially oil and gas has triggered the global energy crisis. Continued use of petroleum fuels is now widely recognized as unsustainable because of their depleting supplies and degradation to the environment. To become less dependent on fossil fuels, current world is shifting paradigm in energy by developing alternative energy sources mainly through the utilization of renewable energy sources. In particular, bioenergy recovery from wastes with the help of microorganism is viewed as one of the promising ways to mitigate the current global warming crisis as well as to supply global energy. It has been proved that microorganism can generate power by converting organic matter into electricity using microbial fuel cells (MFCs). MFC is a bioelectrochemical device that employs microbes to generate electricity from bio-convertible substrate such as wastewaters including municipal solid waste, industrial, agriculture wastes, and sewage. Sustainability, carbon neutral and generation of renewable energy are some of the major features of MFCs. However, the MFC technology is confronted with a number of issues and challenges such as low power production, high electrode material cost and so on. This paper reviews the recent developments in MFC technology with due consideration of electrode materials used in MFCs. In addition, application of biocathodes in MFCs has been discussed.

수상 태양광발전 적지조사 기법에 관한 연구 (A Study on research of suitable site of Floated PV System)

  • 최형철;김예진;김은기;이종석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.1400-1401
    • /
    • 2011
  • RPS(Renewable Portfolio Standard) recently with the introduction of a new solar power development as the market expands, land shortage of solar power as an alternative site for installing solar water development has emerged. Solar water dams, reservoirs and water by taking advantage of available solar power development a new concept of private forest land in a way does not involve destruction of the forest land and water resources through efficient use of environmentally friendly energy production and water quality improvement There are a variety of benefits. This paper won the nation's first solar power to enforce the selection of the optimal location for solar power's award for planning theory and research techniques are intended to establish. Award of the solar system through the analysis of a few research-related materials and renewable energy systems project implementation process to establish an initial investigation techniques as well as the existing dam located about fitness will be assessed. In this study, solar water conducting business in the current analysis with considerable planning and installation of solar installation for the economic and environmental cost of the evaluation period and is expected to be able to give you one.

  • PDF

Electrodeposition of Some Selective Metals Belonging to Light, Refractory and Noble Metals from Ionic Liquid Electrolytes

  • Dilasari, Bonita;Kwon, Kyung-Jung;Lee, Churl-Kyoung;Kim, Han-Su
    • 전기화학회지
    • /
    • 제15권3호
    • /
    • pp.135-148
    • /
    • 2012
  • Ionic liquids are steadily attracting interests throughout a recent decade and their application is expanding into various fields including electrochemistry due to their unique properties such as non-volatility, inflammability, low toxicity, good ionic conductivity, wide electrochemical potential window and so on. These features make ionic liquids become an alternative solution for electrodeposition of metals that cannot be electroplated in aqueous electrolytes. In this review, we classify investigated metals into three categories, which are light (Li, Mg), refractory (Ti, Ta) and noble (Pd, Pt, Au) metals, rather than covering the exhaustive list of metals and try to update the recent development in this area. In electrodeposition of light metals, granular fine Li particles were successfully obtained while the passivation of electrodeposited Mg layers is an obstacle to reversible deposition-dissolution process of Mg. In the case of refractory metals, the quality of Ta and Ti deposit particles was effectively improved with addition of LiF and pyrrole, respectively. In noble metal category, EMIM TFSA ionic liquid as an electrolyte for Au electrodeposition was proven to be effective and BMP TFSA ionic liquid developed a smooth Pd deposit. Pt nanoparticle production from ionic liquid droplet in aqueous solution can be cost-effective and display an excellent electrocatalytic activity.