• Title/Summary/Keyword: Production lead time analysis

Search Result 94, Processing Time 0.029 seconds

- A Study on Construction of Production Logistics Information System in the Small Business - (중소기업형 생산물류정보시스템 구축에 관한 연구)

  • 양광모;박진홍;강경식
    • Journal of the Korea Safety Management & Science
    • /
    • v.5 no.2
    • /
    • pp.155-164
    • /
    • 2003
  • In this regard, the newly focused logistics information system makes reducing the expenses of whole logistic available by cutting down the expenses of materials, transportation and stock and also, it allows the company to cut down the procurement expense through the reduced lead-time and rationalize producing plans by eliminating the uncertain orders and fluctuation in procurement. It further more optimizes the efficiency of over all productions by meeting the dead line for delivery to the customers. In the recent environment of globalization where fierce competitions exist between manufacturers, logistics plays important role in the strategies of companies, and managements of companies try their best efforts in establishing the strategy to accomplish the innovative relationship between supply chain channels. Therefore, in this study, we try to suggest the model of consolidated logistics system that is integrated logistics information system with suggesting the better way of logistics and comparative analysis with logistics system to resolve the difficulties numbers of companies face after realizing what logistics information system is in Korea.

A Study on Construction of Production Logistics Information System using APS(Advanced Planning & Scheduling) (APS(Advanced Planning &Scheduling)를 활용한 생산물류정보시스템 구축에 관한 연구)

  • 김동진;양광모;박재현;강경식
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2003.11a
    • /
    • pp.93-96
    • /
    • 2003
  • In this regard, the newly focused logistics information system makes reducing the expenses of whole logistic available by cutting down the expenses of materials, transportation and stock and also, it allows the company to cut down the procurement expense through the reduced lead-time and rationalize producing plans by eliminating the uncertain orders and fluctuation in procurement. It further more optimizes the efficiency of over all productions by meeting the dead line for delivery to the customers. In the recent environment of globalization where fierce competitions exist between manufacturers, logistics plays important role in the strategies of companies, and managements of companies try their best efforts in establishing the strategy to accomplish the innovative relationship between supply chain channels. Therefore, in this study, we try to suggest the model of consolidated logistics system that is integrated logistics information system with suggesting the better way of logistics and comparative analysis with logistics system to resolve the difficulties numbers of companies face after realizing what logistics information system is in Korea.

  • PDF

Maximizing Use of Common Parts in Complex System Design through Organizing 3D Design Process (3D 설계 프로세스 정립을 통한 복잡한 시스템 설계에서의 공용부품 사용 극대화)

  • Choi, Y.W.;Park, K.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.12 no.3
    • /
    • pp.209-219
    • /
    • 2007
  • Designing a complex system such as an LCD developing system becomes inefficient when many designers are involved and create their own parts even though they can be used repeatedly in other sections. Thus, this paper proposes a new design process that can maximize the number of common parts in complex system design by organizing the 3D design process. The proposed design process consists of 5 stages: analysis of design intention, definition of initial product structure, definition of skeleton model, sharing design intention with all assembles, control of correlation between components. The proposed design process can maximize common parts in design process, which results in shorter lead time, less production cost, and greater economic benefits.

Development of Digital Fashion Design Utilizing the Characteristics of Women's Traditional Costumes in the Tang Dynasty of China (중국 당(唐)나라 여성 전통 복식 특성을 활용한 디지털 패션디자인)

  • Ziheng Zhou;Youn-Hee Lee
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.26 no.1
    • /
    • pp.17-31
    • /
    • 2024
  • The purpose of this study is to propose a modern use of traditional culture by developing creative fashion designs that combine modern and traditional styles based on an analysis of traditional costumes of women in the Tang Dynasty of China. The characteristics of the Tang Dynasty women's costume are as follows. The Tang Dynasty women's costume consists of a short coat (衫, Shan), skirt (裙, Qun), half-arm shawl (半臂, Banbi), and short embroidered cape (帔, Pei). The colors are succinct and elegant, commonly red, yellow, green and navy blue in its entirety. It may be classified by pattern that blend plant patterns, animal patterns, geometric patterns, and two or more mixed patterns. On the basis of the characteristics for traditional women's costume during the Tang Dynasty, the CLO 3D program is employed to develop digital fashion design for four pairs of 3D digital clothing and the production of two pairs of work product. The results are as follows. First, the development of fashion design reflecting the design characteristics of traditional women's clothing in the Tang Dynasty of China could be expressed as fashion design reflecting unique values while connecting tradition and modernity. Second, the 3D virtual clothing program displays an extremely important effect in design deployment and pattern arrangement by having efficiency and convenience in clothing production. The CLO 3D program is closely combined with the 2D design and 3D effect and heightened efficiency while being appropriate to realize sustainability while saving processing time and energy for the sample products. Third, the production of an actual product by facilitating the 3D virtual clothing design may lead to time savings and an effective economy and may allow for the comparison of digital fashion design and actual products as well as confirming the effects of digital fashion design.

Local dynamic buckling of FPSO steel catenary riser by coupled time-domain simulations

  • Eom, T.S.;Kim, M.H.;Bae, Y.H.;Cifuentes, C.
    • Ocean Systems Engineering
    • /
    • v.4 no.3
    • /
    • pp.215-241
    • /
    • 2014
  • Steel catenary riser (SCR) is a popular/economical solution for the oil/gas production in deep and ultra-deep water. The behavioral characteristics of SCR have a high correlation with the motion of floating production facility at its survival and operational environments. When large motions of surface floaters occur, such as FPSO in 100-yr storm case, they can cause unacceptable negative tension on SCR near TDZ (touch down zone) and the corresponding elastic deflection can be large due to local dynamic buckling. The generation, propagation, and decay of the elastic wave are also affected by SCR and seabed soil interaction effects. The temporary local dynamic buckling vanishes with the recovery of tension on SCR with the upheaval motion of surface floater. Unlike larger-scale, an-order-of-magnitude longer period global buckling driven by heat and pressure variations in subsea pipelines, the sub-critical local dynamic buckling of SCR is motion-driven and short cycled, which, however, can lead to permanent structural damage when the resulting stress is greatly amplified beyond the elastic limit. The phenomenon is extensively investigated in this paper by using the vessel-mooring-riser coupled dynamic analysis program. It is found that the moment of large downward heave motion at the farthest-horizontal-offset position is the most dangerous for the local dynamic buckling.

The Structure and Job Analysis of Apparel Buying Office in Korea

  • Chun, Jong-Suk;Yi, Yoo-Jin
    • The International Journal of Costume Culture
    • /
    • v.12 no.2
    • /
    • pp.141-152
    • /
    • 2009
  • In this study, the business structure and characteristics of buying offices used by buyers for apparel productions through global sourcing were analyzed in specifics. Data were acquired through in-depth interviews of twelve merchandisers at representative apparel buying offices. The results of this study can be summarized as following. The business structure of a buying office varied depending on the functions, the item characteristics of products to be manufactured or the characteristics of the major buyers who were the customers. Overall, teams were formed by brands or organizations were formed by functions. Functional teams were divided within each brand team when business teams were divided by brands and personnel was divided by brands occasionally within each functional team when business teams were divided by functions. Business teams were composed of MR which managed the overall business about orders such as factory sourcing, price decision and production management and teams with various specialized skills. The teams with specialized skills were composed of Technical team, Fabric Development team, Colorist team, Quality Assurance (QA) or Quality Control (QC) team, Logistics team, Factory Audit team, and etc. For the future directions on the improvements, ways to increase international competitiveness of buying offices need to be researched and many expressed the opinion that it would be effective to move the offices to countries close to buyers or manufacturing locations as most buyers demand lower prices and shorter lead time than before and it is increasing trend for buyers and factories to do business directly without buying offices in the middle.

  • PDF

Effect of sous-vide cooking conditions on the physicochemical, microbiological and microstructural properties of duck breast meat

  • Dong-Min Shin;Jong Hyeok Yune;Dong-Hyun Kim;Sung Gu Han
    • Animal Bioscience
    • /
    • v.36 no.10
    • /
    • pp.1596-1603
    • /
    • 2023
  • Objective: Sous-vide cooking offers several advantages for poultry meat, including enhanced tenderness, reduced cooking loss, and improved product yield. However, in duck meat, there are challenges associated with using the sous-vide method. The prolonged cooking time at low temperatures can lead to unstable microbial and oxidative stabilities. Thus, we aimed to assess how varying sous-vide cooking temperatures and durations affect the physicochemical and microbial characteristics of duck breast meat, with the goal of identifying an optimal cooking condition. Methods: Duck breast meat (Anas platyrhynchos) aged 42 days and with an average weight of 1,400±50 g, underwent cooking under various conditions (ranging from 50℃ to 80℃) for either 60 or 180 min. Then, physicochemical, microbial, and microstructural properties of the cooked duck breast meat were assessed. Results: Different cooking conditions affected the quality attributes of the meat. The cooking loss, lightness, yellowness, Hue angle, whiteness, and thiobarbituric acid reactive substance (TBARS) values of the duck breast meat increased with the increase in cooking temperature and time. In contrast, the redness and chroma values decreased with the increase in cooking temperature and time. Cooking of samples higher than 60℃ increased the volatile basic nitrogen contents and TBARS. Microbial analysis revealed the presence of Escherichia coli and Coliform only in the samples cooked at 50℃ and raw meat. Cooking at lower temperature and shorter time increased the tenderness of the meat. Microstructure analysis showed that the contraction of myofibrils and meat density increased upon increasing the cooking temperature and time. Conclusion: Our data indicate that the optimal sous-vide method for duck breast meat was cooking at 60℃ for 60 min. This temperature and time conditions showed good texture properties and microbial stability, and low level of TBARS of the duck breast meat.

The Comparative Analysis of 3D Software Virtual and Actual Wedding Dress

  • Yuan, Xin-Yi;Bae, Soo-Jeong
    • Journal of Fashion Business
    • /
    • v.21 no.6
    • /
    • pp.47-65
    • /
    • 2017
  • This study is intended to compare an actual wedding dress being made completely through 3D software, and compare it with an actual dress of a real model by using collective tools for comparative analysis. The method of the study was conducted via a literature review along with the production of the dresses. In the production, two wedding dresses for the small wedding ceremony were designed. Each of the design was made into both 3D and an actual garment. The results are as follows. First, the 3D whole body scanner reflects the measure of the exact human body size, however there were some difficulties in matching what the customer wanted, because the difference of the skin color and the hair style. Second, the pattern of the dress is much more easily altered than it was in the real production. Third, the silhouette of the virtual and the actual person with the dress was nearly the same. Fourth, textile tool was much more convenient because of the use of real-time rendering on the virtual dresses. Lastly, the lace and biz decoration were flat, and the luster was duller than in reality. Prospectively, the consumer will decide their own design of variety through the use of the avatar without wearing the actual dresses, and they would demand what the another one desired, different from the presented ones by making the corrections by themselves. Through this process, the consumer would be actively participating in the design, a step which would finally lead to the two way designing rather than the one way design of present times.

Effect of structure configurations and wind characteristics on the design of solar concentrator support structure under dynamic wind action

  • Kaabia, Bassem;Langlois, Sebastien;Maheux, Sebastien
    • Wind and Structures
    • /
    • v.27 no.1
    • /
    • pp.41-57
    • /
    • 2018
  • Concentrated Solar Photovoltaic (CPV) is a promising alternative to conventional solar structures. These solar tracking structures need to be optimized to be competitive against other types of energy production. In particular, the selection of the structural parameters needs to be optimized with regards to the dynamic wind response. This study aims to evaluate the effect of the main structural parameters, as selected in the preliminary design phase, on the wind response and then on the weight of the steel support structure. A parametric study has been performed where parameters influencing dynamic wind response are varied. The study is performed using a semi-deterministic time-domain wind analysis method. Unsteady aerodynamic model is applied for the shape of the CPV structure collector at different configurations in conjunction with a consistent mass-spring-damper model with the corresponding degrees of freedom to describe the dynamic response of the system. It is shown that, unlike the static response analysis, the variation of the peak wind response with many structural parameters is highly nonlinear because of the dynamic wind action. A steel structural optimization process reveals that close attention to structural and site wind parameters could lead to optimal design of CPV steel support structure.

Projecting the climatic influences on the water requirements of wheat-rice cropping system in Pakistan (파키스탄 밀-옥수수 재배시스템의 기후변화를 반영한 필요수량 산정)

  • Ahmad, Mirza Junaid;Choi, Kyung-Sook
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.486-486
    • /
    • 2018
  • During the post green revolution era, wheat and rice were the main crops of concern to cater the food security issues of Pakistan. The use of semi dwarf high yielding varieties along with extensive use of fertilizers and surface and ground water lead to substantial increase in crop production. However, the higher crop productivity came at the cost of over exploitation of the precious land and water resources, which ultimately has resulted in the dwindling production rates, loss of soil fertility, and qualitative and quantitative deterioration of both surface and ground water bodies. Recently, during the past two decades, severe climate changes are further pushing the Pakistan's wheat-rice system towards its limits. This necessitates a careful analysis of the current crop water requirements and water footprints (both green and blue) to project the future trends under the most likely climate change phenomenon. This was done by using the FAO developed CROPWAT model v 8.0, coupled with the statistically-downscaled climate projections from the 8 Global Circulation Models (GCMs), for the two future time slices, 2030s (2021-2050) and 2060s (2051-2080), under the two Representative Concentration Pathways (RCPs): 4.5 and 8.5. The wheat-rice production system of Punjab, Pakistan was considered as a case study in exploration of how the changing climate might influence the crop water requirements and water footprints of the two major crops. Under the worst, most likely future scenario of temperature rise and rainfall reduction, the crop water requirements and water footprints, especially blue, increased, owing to the elevated irrigation demands originating from the accelerated evapotranspiration rates. A probable increase in rainfall as envisaged by some GCMs may partly alleviate the adverse impacts of the temperature rise but the higher uncertainties associated with the predicated rainfall patterns is worth considering before reaching a final conclusion. The total water footprints were continuously increasing implying that future climate would profoundly influence the crop evapotranspiration demands. The results highlighted the significance of the irrigation water availability in order to sustain and improve the wheat-rice production system of Punjab, Pakistan.

  • PDF