• 제목/요약/키워드: Production and Purification

검색결과 575건 처리시간 0.031초

식물세포 배양으로부터 Peroxidase 대량 정제를 위한 전처리 공정 개발 (A New large-scale Pre-purification for Peroxidase from Plant Cell Cultures)

  • 표상현
    • KSBB Journal
    • /
    • 제15권4호
    • /
    • pp.342-345
    • /
    • 2000
  • 식물세포배양으로부터 peroxidase를 대량 생산하기 위한 분리/정제 공정 으로서 세포를 파쇄하고 크로마토그래피 전처리로서 활성백토를 적용하였다. 활성백토는 미세한 세 포 조각 뿐만 아니라 여려가지 불순불을 선택적으로 흡착 하는 성질을 나타내었으며, 이를 통하여 효과적으로 정제 공정을 진행할 수 있었다 흡착을 통한 전처리 후 한외여 과장치를 이용하여 농축을 실시 하였으며, DEAE-Sepharose F FF를 이용한 크로마토그래피를 통해 정제가 이루어졌다. 활성을 나타내는 용액을 탈염, 농축 후 동결 건조하였다. 이 공정은 상업화에 필요한 대량 정제를 가능하게 하였으며 수율과 정제비용 측면에서 상당히 경제적인 공정임을 입증하였다, 활성백토를 이용한 흡착공정은 다른 효소 및 단백질의 경제적인 대량정제에 적용될 수 있으리라 기대된다.

  • PDF

Production and partial purification of Staphylococcus aureus alpha toxin

  • Park, Hee-myung;Oh, Tae-ho;Han, Hong-ryul
    • 대한수의학회지
    • /
    • 제39권5호
    • /
    • pp.1028-1032
    • /
    • 1999
  • Alpha toxin of S aureus has cytolytic activity respectively. This antigen has been received the most attention since it is a major virulence factor in pathogenesis of staphylococcal mastitis. Thus, alpha toxin has been focused as potential candidate of vaccine to minimize mastitis in cows. The purpose of this study was to develop a simple, efficient production and purification methods of sufficient amount of alpha toxin antigen from S aureus. Alpha toxin production measured by hemolytic activity was the highest at 18 hrs postinoculation in yeast extract culture medium supplemented with thiamine, nicotinic acid and casamino acid. Alpha toxin was purified by ammonium sulfate precipitation (65%) and ultrafiltration. Molecular weight of the toxin was 33 kDa in the analysis with SDS-PAGE. Conclusionally, when alpha toxin was included in the vaccine, the optimal harvest time of alpha toxin was at 18 hrs after inoculation in yeast extract medium supplemented with thiamine and nicotinic acid.

  • PDF

Application of extraction chromatographic techniques for separation and purification of emerging radiometals 44/47Sc and 64/67Cu

  • Vyas, Chirag K.;Park, Jeong Hoon;Yang, Seung Dae
    • 대한방사성의약품학회지
    • /
    • 제2권2호
    • /
    • pp.84-95
    • /
    • 2016
  • Considerably increasing interest in using the theranostic isotopes/ isotope pairs of radiometals like $^{44/47}Sc$ and $^{64/67}Cu$ for diagnosis and/or therapeutic applications in the nuclear medicine procedures necessitates its reliable production and supply. Separation and purification of no-carrier-added (NCA) isotopes from macro quantitates of the irradiated target matrix along with other impurities is a cardinal procedure amongst several other steps involved in its production. Multitudinous methods including but not limited to liquid-liquid (solvent) extraction, extraction chromatography (EXC), ion exchange, electrodeposition and sublimation are routinely applied either solitarily or in combination for the separation and purification of radioisotopes depending on their production routes, radioisotope of interest and impurities involved. However, application of EXC though has shown promises towards the numerous separation techniques have not received much attention as far as its application prospects in the field of nuclear medicine are concerned. Advances in the recent past for application of the EXC resins in separation and purification of the several medically important radioisotopes at ultra-high purity have shown promising behavior with respect to their operation simplicity, acidic and radiolytic stability, separation efficiencies and speedy procedures with the enhanced and excellent extraction abilities. In this mini review we will be talking about the recent developments in the application and the use of EXC techniques for the separation and purification of $^{44/47}Sc$ and $^{64/67}Cu$ for medical applications. Furthermore, we will also discuss the scientific and practical aspects of EXC in the view of separation of the NCA trace amount of radionuclides.

탄소중립형 바이오수소 생산 및 분리막기반 정제 기술 소개 (Biohydrogen Generation and Purification Technologies for Carbon Net Zero)

  • 김효원
    • 멤브레인
    • /
    • 제33권4호
    • /
    • pp.168-180
    • /
    • 2023
  • 본 총설은 탄소중립 및 에너지순환을 실현하기 위한 재생에너지로부터 그린수소 생산 전략 중 하나인 바이오수소 생산 및 정제법에 관해 소개하고자 한다. 바이오수소는 생물질과 미생물과 같은 재생에너지원을 이용하며, 상온 및 상압 등의 마일드한 실험조건에서 작동하여 에너지소비 및 공정비용이 적게 드는 친환경 공정으로 알려져 있다. 하지만, 이러한 바이오수소를 상업적으로 이용하기 위해서는 해결해야 할 중요한 도전적인 과제가 존재한다. 특히, 바이오수소는 생물반응기내의 복합한 화학반응으로 합성되어, 낮은 수소생산 속도 및 반응기내 다양한 혼합물이 존재하여, 바이오수소 고순도화를 위해서 연속공정 형태의 분리 및 정제 기술이 반드시 필요하다. 이를 위해, 저온 증류법, 압력 흡착법, 분리막법 등을 비롯한 다양한 분리 및 정제 기술이 고순도 바이오수소를 얻기 위해 제안되었다. 본 총설에서는 바이오수소 생산 및 정제 연계화를 위한 비다공성 고분자 분리막의 가능성에 대해 소개하고자 한다.

황-요오드 수소 제조 공정에서 분젠 반응 생성물의 정제 (Purification of Bunsen Reaction Products in Sulfur-Iodine Hydrogen Production Process)

  • 차광서;김영호;강영한;김효섭;박주식;배기광
    • 한국수소및신에너지학회논문집
    • /
    • 제21권3호
    • /
    • pp.158-166
    • /
    • 2010
  • The purification of two liquid phases ($H_2SO_4$ phase and HIx phase) formed from a Bunsen reaction in Sulfur-Iodine (SI) hydrogen production process was investigated in order to operate SI process efficiently. The each synthetic solution for two liquid phases contained impurities was prepared on the basis of a proper composition obtained from Bunsen reaction. The purification of each solution was performed by counter-current flow using a packed column at different temperatures and $N_2$ flow rates. As the results of purification, impurities existed in each phase were decreased with increasing the temperature and the $N_2$ flow rate. In particular, the increase of the $N_2$ flow rate at the lower temperatures was effective to remove impurities by a reverse Bunsen reaction without side reactions. On the whole, it may be concluded that the purification of each phase is accomplished by mixing effects of the stripping, the evaporation, and the reverse Bunsen reaction.

Paclitaxel : 산업화 단계에서의 회수 및 정제 (Paclitaxel : Recovery and Purification in Commercialization Step)

  • 김진현
    • KSBB Journal
    • /
    • 제21권1호
    • /
    • pp.1-10
    • /
    • 2006
  • 식물세포배양으로부터 항암제 paclitaxel의 생산을 위해 회수 및 정제는 산업적 공정에 있어서 필수적이다. 본 총설은 식물세포배양으로부터 고순도, 고수율의 paclitaxel 생산을 위한 대량 회수 및 정제 방법을 기술하고자 한다. 또한 이러한 분리 및 정제 공정은 추출, 전 처리, 정제, 제품화 단계를 총괄하여 최종 제품의 요구조건들 즉, 순도, 잔류용매, 제품형태, 불순물 함량, 엔도톡신 함량 등을 충족시킬 수 있도록 최적화되어야 한다. 이러한 관점에서 본 총설은 산업화 단계에서의 의약품 생산 및 품질관리에 상당히 유용하게 활용될 수 있을 것으로 판단된다.

Microbial production of coenzyme Q10

  • Suh, Jung-Woo
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2006년도 Proceedings of The Convention
    • /
    • pp.127-130
    • /
    • 2006
  • Coenzyme Q10(CoQ10) is a biological quinine compound that is widely found in living organisms including yeast, plants, and animals. CoQ10 has two major physiological activities:(a)mitochondrial electron-transport activity and (b )antioxidant activity. Various clinical applications are also available: Parkinson's disease, Heart disease, diabetes. Because of its various application filed, the market size of CoQ10 is continuously expanding all over the world. A Japanese company, Nisshin Pharma Inc. is the first industrial producer of CoQ10(1974). CoQ10 can be produced by fermentation and chemical synthesis. In several companies, these two methods are used for the production of CoQ10:chemical synthesis - Yungjin, Daewoong, Nishin Parma; fermentation - Kaneka, Kyowa, Yungjin, etc. Researchs in microbial production of CoQ10 have several steps: screening of producing microorganisms, strain development, fermentation process, purification process, scale-up process, plant production. Several strategies are available for the strain development : Random mutation and screening, directed metabolic engineering. For the optimization of fermentation process, various conditions (nutrient, aeration, temperature, culture type, etc.) are considered. Purification is one of the most important step because the quality of final products entirely depends on its purity. The production cost will be reduced and the quality of the CoQ10 will be impoved by continuous researches in strain development, fermentation process, purification process.

  • PDF

Microbial production of coenzyme Q10

  • Suh, Jung-Woo
    • 한국약용작물학회:학술대회논문집
    • /
    • 한국약용작물학회 2006년도 Proceedings of The Convention of The Korean Society of Applied Pharmacology
    • /
    • pp.127-130
    • /
    • 2006
  • Coenzyme Q10(CoQ10) is a biological quinine compound that is widely found in living organisms including yeast, plants, and animals. CoQ10 has two major physiological activities:(a)mitochondrial electron-transport activity and (b)antioxidant activity. Various clinical applications are also available : Parkinson's disease, Heart disease, diabetes. Because of its various application filed, the market size of CoQ 10 is continuously expanding all over the world. A Japanese company, Nisshin Pharma Inc. is the first industrial producer of CoQ10(1974). CoQ10 can be produced by fermentation and chemical synthesis. In several companies, these two methods are used for the production of CoQ10:chemical synthesis - Yungjin, Daewoong, Nishin Parma; fermentation - Kaneka, Kyowa, Yungjin, etc. Researchs in microbial production of CoQ10 have several steps: screening of producing microorganisms, strain development, fermentation process, purification process, scale-up process, plant production. Several strategies are available for the strain development : Random mutation and screening, directed metabolic engineering. For the optimization of fermentation process, various conditions (nutrient, aeration, temperature, culture type, etc.) are considered. Purification is one of the most important step because the quality of final products entirely depends on its purity. The production cost will be reduced and the quality of the CoQ10 will be impoved by continuous researches in strain development, fermentation process, purification process.

  • PDF

Ganoderma lucidum 균주에 의한 Laccase의 정제 및 효소적 특성 (Purification and enzyme characteristics of laccase from Ganoderma lucidum)

  • 이재성;박경숙;박영도
    • 한국미생물·생명공학회지
    • /
    • 제14권2호
    • /
    • pp.139-143
    • /
    • 1986
  • The production media and enzymatic characteristics of laccase from Ganoderma lucidum was investigated. Potato dextrose yeast extract media was proved to be the best for laccase production. The enzyme has optimum pH of 6.45km value of 6.71 mM and appeared to be stable at wide pH range. The enzyme was inactivated partially by methanol and ethanol and totally by sodium azide but not at all by acetone. Also the enzyme purification was performed and the data is given.

  • PDF

곤충세포 배지로부터 히스티딘이 융합된 Autotaxin(NPP-2)의 발현, 분비 및 정제 (Expression, Secretion and Purification of Histidine-Tagged Autotaxin (NPP2) from Insect Cells Media)

  • 이종한;송재휘;이종흔;안영민;김수영;이석형;박원상;유남진;홍성렬
    • 약학회지
    • /
    • 제47권6호
    • /
    • pp.410-416
    • /
    • 2003
  • Autotaxin(ATX) was originally purified from conditioned media of A2058 human melanoma cells and shown to be a potent cell motility-stimulating factor, possessing a type II nucleotide pyrophosphatase/phosphodiesterase (NPP2) activity. Recombinant ATX has recently demonstrated that human plasma lysophosholipase D is identical to ATX and uses lysophosphatidylcholine as a substrate to mediate various biological functions including tumor cell growth and motility through G-protein coupled receptor. However, despite pivotal roles of ATX on physiological or pathophysiological states, the production of ATX is solely depends on complicated purification method which employs multiple column steps, but resulted in very poor yield. This limited the use of ATX for extensive analysis. We, therefore, expressed six histidine-tagged recombinant human ATX(His-ATX) in High Five TM insect cells to improve the generation of ATX and to make simple the purification of ATX. The signal sequence of the human ATX gene was truncated and replaced with sequence of insect cell secretion signal within expression vector. In addition, codons for six histidines were added to the C-termini of 120kDa ATX cDNA construct. A simple purification scheme utilizing two-step affinity column chromatography was designed to purify His-ATX to homogeneity from the culture supernatant of transfected insect cells. Homogenous His-ATX was detected and isolated from the concentrated insect cell medium using concanavalin A agarose and nickel affinity chromatography. Purified His-ATX was in full length with ATX capacity. A combination of this expression system and purification scheme would be useful for production and purification of high-quality functional ATX for research and practical application of multiple functional motogen, ATX/NPP-2.