• Title/Summary/Keyword: Production Mechanism

Search Result 2,117, Processing Time 0.025 seconds

The therapeutic effect of Drynariae Rhizoma in a mouse model of allergic asthma (천식 모델 마우스에서 골쇄보의 항천식 효과)

  • Kim, Seung-Taik;Lee, Jang-Cheon;Lee, Young-Cheol
    • The Korea Journal of Herbology
    • /
    • v.26 no.4
    • /
    • pp.49-57
    • /
    • 2011
  • Objective : Allergic asthma is a chronic airway disease that affects millions of people in the developed world. The disease is characterized by concurring airway inflammation, Th2 cytokine production, increased mucus secretion, airway hyperresponsiveness (AHR) to inhaled antigen, and pulmonary fibrosis. To investigate the therapeutic and anti-asthmatic effects of Drynariae Rhizoma (DR), we examined the influence of DR on the development of pulmonary eosinophilic inflammation and airway hyperresponsiveness in a mouse model of allergic asthma. Methods : In this study, BALB/c mice were systemically sensitized to ovalbumin (OVA) followed intratracheally, intraperitoneally, and by aerosol allergen challenges. We investigated the effect of DR on airway hyperresponsiveness, pulmonary eosinophilic infiltration, various immune cell phenotypes, Th2 cytokine production and OVA specific IgE production in a mouse model of asthma. Results : In asthmatic mice, we found that DR.treated groups had suppressed eosinophil infiltration, allergic airway inflammation and AHR by suppressing the production of IL-5, IL-13 and OVA specific IgE. Conclusions : Our data suggest that the therapeutic mechanism by which DR effectively treats asthma is based on reductions of Th2 cytokines (IL-5), eotaxin, OVA-specific IgE production and eosinophil infiltration.

Effects of Oxygen Supply and Mixed Sugar Concentration on ${\small{D}}$-Ribose Production by a Transketolase-Deficient Bacillus subtilis SPK1

  • Park, Yong-Cheol;Lee, Hae-Jin;Kim, Chang Sup;Seo, Jin-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.4
    • /
    • pp.560-564
    • /
    • 2013
  • ${\small{D}}$-Ribose is a value-added five-carbon sugar used for riboflavin production. To investigate the effects of oxygen supply and mixed sugar concentration on microbial production of ${\small{D}}$-ribose, a transketolase-deficient Bacillus subtilis SPK1 was cultured batch-wise using xylose and glucose. A change of agitation speed from 300 rpm to 600 rpm at 1 vvm of air supply increased both the xylose consumption rate and ${\small{D}}$-ribose production rate. Because the sum of the specific consumption rates for xylose and glucose was similar at all agitation speeds, metabolic preferences between xylose and glucose might depend on oxygen supply. Although B. subtilis SPK1 can take up xylose and glucose by the active transport mechanism, a high initial concentration of xylose and glucose was not beneficial for high ${\small{D}}$-ribose production.

Antioxidants as alleviating agents of in-vitro embryo production oxidative stress

  • Areeg Almubarak;Il-Jeoung Yu;Yubyeol Jeon
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.38 no.2
    • /
    • pp.47-53
    • /
    • 2023
  • Despite numerous advances in in-vitro embryo production (IVP), many documented factors have been shown to influence the development of mammalian preimplantation embryos and the success of IVP. In this sense, elevated levels of reactive oxygen species (ROS) correlate with poor outcomes in assisted reproductive technologies (ART) due to oxidative stress (OS), which results from an imbalance between ROS production and neutralization. Indeed, excessive production of ROS compromises the structural and functional integrity of gametes and embryos both in vivo and in vitro. In particular, OS damages proteins, lipids, and DNA and accelerates cell apoptosis. Several in-vivo and in-vitro studies report an improvement in qualityrelevant parameters after the use of various antioxidants. In this review, we focus on OS and the source of free radicals and their effects on oocytes, sperm, and the embryo during IVP. In addition, antioxidants and their important role in IVP, supplementation during oocyte in vitro maturation (IVM), in vitro culture (IVC), and semen extenders were discussed. Nevertheless, various methods for determining the level of ROS in germ cells have been briefly described. Still, it is crucial to develop standardized antioxidant supplement systems to improve overall IVP success. Further studies should explore the safety, efficacy, mechanism of action, and combination of different antioxidants to improve IVP outcomes.

The Effect of Jaeumgeonbitang adding Evodiae Fructus Extract on the Cerebral Hemodynamics in Rats (자음건비탕가오수유(滋陰健脾湯加吳茱萸) 추출물이 흰쥐의 뇌혈류역학에 미치는 영향)

  • Kong, Kyunghee;Lee, Eunkyoung;Lee, Giseung;Jeong, Hyunwoo;Chong, Myongsoo
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.19 no.3
    • /
    • pp.155-170
    • /
    • 2015
  • Objective : Jaeumgeonbitang have been used in Korean medicine for many centuries as a therapuetic agent of vertigo. JAE was extract of Jaeumgeonbitang adding Evodiae Fructus. The effects of JAE on the cerebral blood flow and blood pressure is not known. This study was designed to investigate the effects of JAE on the ischemic crebral injuries. Method : We performed to investigate effects of JAE on the changes of regional cerebral blood flow(rCBF) and mean arterial blood pressure (MABP) in normal and ischemic rats, and further to determine the mechanism and cytokines production ($IL-1{\beta}$, $TNF-{\alpha}$, IL-10, $TGF-{\beta}$) of JAE. Results : In normal rats, JAE significantly increased rCBF and significantly decreased MABP in a dose-dependent manner. This result suggested that JAE significantly increased rCBF by dilating pial arterial diameter. Increase of JAE-induced rCBF was significantly inhibited by the pretreatment with indomethacin (1 mg/kg, i.p.), an inhibitor of cyclooxygenase, and was significantly inhibited by methylene blue ($10{\mu}g/kg$, i.p.), an inhibitor of guanylate cyclase. Decrease of JAE-induced MABP was significantly increased by the pretreatment with indomethacin (1 mg/kg, i.p.), an inhibitor of cyclooxygenase. So, these results suggested that the mechanism of JAE was mediated by cyclooxygenase. In ischemic rat, the rCBF was significantly and stably increased by JAE (10 mg/kg, i.p.) during the period of cerebral reperfusion, which contrasted with the findings of rapid and marked increase in Control group. In cytokine production of serum by drawing from femoral arterial blood at 1 hr after reperfusion, Sample group (JAE 10 mg/kg treated group) was significantly decreased $IL-1{\beta}$ and $TNF-{\alpha}$ production compared with Control group. In cytokine production of serum by drawing from femoral arterial blood at 1 hr after reperfusion, Sample group was significantly increased IL-10 production compared with Control group. Conclusion : These results suggested that JAE was significantly and stably increased regional cerebral blood flow by inhibited $IL-1{\beta}$ and $TNF-{\alpha}$ production, and increased IL-10 production.

The Integrins Involved in Soybean Agglutinin-Induced Cell Cycle Alterations in IPEC-J2

  • Pan, Li;Zhao, Yuan;Yuan, Zhijie;Farouk, Mohammed Hamdy;Zhang, Shiyao;Bao, Nan;Qin, Guixin
    • Molecules and Cells
    • /
    • v.40 no.2
    • /
    • pp.109-116
    • /
    • 2017
  • Soybean agglutinin (SBA) is an anti-nutritional factor of soybean, affecting cell proliferation and inducing cytotoxicity. Integrins are transmembrane receptors, mediating a variety of cell biological processes. This research aims to study the effects of SBA on cell proliferation and cell cycle progression of the intestinal epithelial cell line from piglets (IPEC-J2), to identify the integrin subunits especially expressed in IPEC-J2s, and to analyze the functions of these integrins on IPEC-J2 cell cycle progression and SBA-induced IPEC-J2 cell cycle alteration. The results showed that SBA lowered cell proliferation rate as the cell cycle progression from G0/G1 to S phase (P < 0.05) was inhibited. Moreover, SBA lowered mRNA expression of cell cycle-related gene CDK4, Cyclin E and Cyclin D1 (P < 0.05). We successfully identified integrins ${\alpha}2$, ${\alpha}3$, ${\alpha}6$, ${\beta}1$, and ${\beta}4$ in IPEC-J2s. These five subunits were crucial to maintain normal cell proliferation and cell cycle progression in IPEC-J2s. Restrain of either these five subunits by their inhibitors, lowered cell proliferation rate, and arrested the cells at G0/G1 phase of cell cycle (P < 0.05). Further analysis indicated that integrin ${\alpha}2$, ${\alpha}6$, and ${\beta}1$ were involved in the blocking of G0/G1 phase induced by SBA. In conclusion, these results suggested that SBA lowered the IPEC-J2 cell proliferation rate through the perturbation of cell cycle progression. Furthermore, integrins were important for IPEC-J2 cell cycle progression, and they were involved in the process of SBA-induced cell cycle progression alteration, which provide a basis for further revealing SBA anti-proliferation and anti-nutritional mechanism.

Web Server Fault Diagnoisi and Recovery Mechanism Using INBANCA (INBANCA기법을 이용한 웹 서버 장애 진단 및 복구기법)

  • Yun, Jung-Mee;Ahn, Seong-Jin;Chung, Jin-Wook
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.8
    • /
    • pp.2497-2504
    • /
    • 2000
  • This paper is aimed at defining items of fault, and then constructing rules of fault diagnosis and recovery using INBANCA technology for the purpose of managing the weh server. The fault items of web server consist of the process fault, server overload, network interface fault, configuration and performance fault. Based on these items, the actual fault management is carried out fault referencing. In order to reference the fault, we have formulated the system-level fault diagnosis production rule and the service-level fault diagnosis rule, conjunction with translating management knowledge into active network. Also, adaptive recovery mechanism of web server is applied to defining recovery rule and constructing case library for case-based web server fault recovery. Finally, through the experiment, fault environment and applicability of each proposed production rule and recovering scheme are presented to verify justification of proposed diagnosis rules and recovery mechanism for fault management. An intelligent case-based fault management scheme proposed in this paper can minimize an effort of web master to remove fault incurred web administration and operation.

  • PDF

Avicularin Inhibits Lipopolysaccharide-Induced Inflammatory Response by Suppressing ERK Phosphorylation in RAW 264.7 Macrophages

  • Vo, Van Anh;Lee, Jae-Won;Chang, Ji-Eun;Kim, Ji-Young;Kim, Nam-Ho;Lee, Hee Jae;Kim, Sung-Soo;Chun, Wanjoo;Kwon, Yong-Soo
    • Biomolecules & Therapeutics
    • /
    • v.20 no.6
    • /
    • pp.532-537
    • /
    • 2012
  • Avicularin, quercetin-3-${\alpha}$-L-arabinofuranoside, has been reported to possess diverse pharmacological properties such as anti-inflammatory and anti-infectious effects. However, the underlying mechanism by which avicularin exerts its anti-inflammatory activity has not been clearly demonstrated. This study aimed to elucidate the anti-inflammatory mechanism of avicularin in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells. Avicularin significantly inhibited LPS-induced excessive production of pro-inflammatory mediators such as nitric oxide (NO) and $PGE_2$ and the protein levels of iNOS and COX-2, which are responsible for the production of NO and $PGE_2$, respectively. Avicularin also suppressed LPS-induced overproduction of pro-inflammatory cytokine IL-$1{\beta}$. Furthermore, avicularin significantly suppressed LPS-induced degradation of $I{\kappa}B$, which retains NF-${\kappa}B$ in the cytoplasm, consequently inhibiting the transcription of pro-inflammatory genes by NF-${\kappa}B$ in the nucleus. To understand the underlying signaling mechanism of anti-inflammatory activity of avicularin, involvement of multiple kinases was examined. Avicularin significantly attenuated LPS-induced activation of ERK signaling pathway in a concentration-dependent manner. Taken together, the present study clearly demonstrates that avicularin exhibits anti-inflammatory activity through the suppression of ERK signaling pathway in LPS-stimulated RAW 264.7 macrophage cells.

Ginsenosides Decrease β-Amyloid Production via Potentiating Capacitative Calcium Entry

  • Yoon Young Cho;Jeong Hill Park;Jung Hee Lee;Sungkwon Chung
    • Biomolecules & Therapeutics
    • /
    • v.32 no.3
    • /
    • pp.301-308
    • /
    • 2024
  • Alzheimer's disease (AD) is a progressive and irreversible neurodegenerative disorder characterized by extracellular amyloid plaques composed of amyloid β-peptide (Aβ). Studies have indicated that Ca2+ dysregulation is involved in AD pathology. It is reported that decreased capacitative Ca2+ entry (CCE), a refilling mechanism of intracellular Ca2+, resulting in increased Aβ production. In contrast, constitutive activation of CCE could decrease Aβ production. Panax ginseng Meyer is known to enhance memory and cognitive functions in healthy human subjects. We have previously reported that some ginsenosides decrease Aβ levels in cultured primary neurons and AD mouse model brains. However, mechanisms involved in the Aβ-lowering effect of ginsenosides remain unclear. In this study, we investigated the relationship between CCE and Aβ production by examining the effects of various ginsenosides on CCE levels. Aβ-lowering ginsenosides such as Rk1, Rg5, and Rg3 potentiated CCE. In contrast, ginsenosides without Aβ-lowering effects (Re and Rb2) failed to potentiate CCE. The potentiating effect of ginsenosides on CCE was inhibited by the presence of 2-aminoethoxydiphenyl borate (2APB), an inhibitor of CCE. 2APB alone increased Aβ42 production. Furthermore, the presence of 2APB prevented the effects of ginsenosides on Aβ42 production. Our results indicate that ginsenosides decrease Aβ production via potentiating CCE levels, confirming a close relationship between CCE levels and Aβ production. Since CCE levels are closely related to Aβ production, modulating CCE could be a novel target for AD therapeutics.

Dynamic Analysis of Driving Mechanism for Displacement Controlled Automatic Drug Injector (변위 제어형 자동 약물주입기의 구동기구 동역학 해석)

  • Shin, Young Kyu;Han, Nam Gyu;Tak, Tae Oh
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.3
    • /
    • pp.303-311
    • /
    • 2013
  • This research deals with the analysis and design of a driving mechanism for an automatic pneumatic drug injector, which can precisely control the injection volume using a relatively simple friction-driven mechanism, without any complicated control system. Through a dynamic analysis, the effects of the design parameters of the driving mechanism associated with the geometry, spring stiffness, and fiction are analyzed, and the results are reflected in a proto-type drug injector design, which is under development for mass production. A test is performed to assess the durability of the mechanism for up to one million operations, and comparison of its displacement after one million operations, verifies the mechanism's durability.

NOx Formation Characteristics on Heat Loss Rate for CH4/Air Premixed Flames in a Perfectly Stirred Reactor (완전혼합 반응기에서 CH4/Air 예혼합화염의 열손실율에 따른 Nox 생성특성)

  • Hwang, Cheol-Hong;Lee, Kee-Man;Kum, Sung-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.7
    • /
    • pp.1465-1472
    • /
    • 2009
  • The effect of heat loss rate on NOx formation of $CH_4/air$premixed flame were examined numerically in a perfectly stirred reactor. The following conclusions were drawn. Under the adiabatic wall condition, an increase in the residence time causes a remarkable increases in NOx emission. Under the heat loss conditions, however, NOx decreases significantly as the heat transfer coefficient and residence time increase. As the heat loss rate increases, Thermal NO mechanism and Re-burning NO mechanism play an important role in the NOx reduction, but Prompt NO mechanism and $N_2O$-intermediate NO mechanism lead to the increase in NOx production. Although the NOx formation is actually related to complex NOx mechanism with the changes in the heat transfer coefficient and residence time, it was found that NOx concentration can be represented by independent Thermal NO mechanism. From these results, new NOx correlation combined with the heat loss rate and residence time was suggested for predicting the NOx concentration in a practical $CH_4/air$premixed combustor.