DOI QR코드

DOI QR Code

Effects of Oxygen Supply and Mixed Sugar Concentration on ${\small{D}}$-Ribose Production by a Transketolase-Deficient Bacillus subtilis SPK1

  • Park, Yong-Cheol (Department of Advanced Fermentation Fusion Science and Technology, Kookmin University) ;
  • Lee, Hae-Jin (Department of Advanced Fermentation Fusion Science and Technology, Kookmin University) ;
  • Kim, Chang Sup (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Seo, Jin-Ho (Department of Agricultural Biotechnology, Seoul National University)
  • Received : 2012.12.10
  • Accepted : 2013.01.03
  • Published : 2013.04.28

Abstract

${\small{D}}$-Ribose is a value-added five-carbon sugar used for riboflavin production. To investigate the effects of oxygen supply and mixed sugar concentration on microbial production of ${\small{D}}$-ribose, a transketolase-deficient Bacillus subtilis SPK1 was cultured batch-wise using xylose and glucose. A change of agitation speed from 300 rpm to 600 rpm at 1 vvm of air supply increased both the xylose consumption rate and ${\small{D}}$-ribose production rate. Because the sum of the specific consumption rates for xylose and glucose was similar at all agitation speeds, metabolic preferences between xylose and glucose might depend on oxygen supply. Although B. subtilis SPK1 can take up xylose and glucose by the active transport mechanism, a high initial concentration of xylose and glucose was not beneficial for high ${\small{D}}$-ribose production.

Keywords

References

  1. De Wulf, P., W. Soetaert, D. Schwengers, and E. J. Vandamme. 1996. D-Glucose does not catabolite repress a transketolasedeficient D-ribose-producing Bacillus subtilis mutant strain. J. Ind. Microbiol. Biotechnol. 17: 104-109.
  2. Kim, B., S. Lee, J. Park, M. Lu, M. Oh, Y. Kim, and J. Lee. 2012. Enhanced 2,3-butanediol production in recombinant Klebsiella pneumoniae via overexpression of synthesis-related genes. J. Microbiol. Biotechnol. 22: 1258-1263. https://doi.org/10.4014/jmb.1201.01044
  3. Li, Y. L., J. H. Hugenholtz, J. C. Chen, and S. Y. L. Lun. 2002. Enhancement of pyruvate production by Torulopsis glabrata using a two-stage oxygen supply control strategy. Appl. Microbiol. Biotechnol. 60: 101-106. https://doi.org/10.1007/s00253-002-1064-y
  4. Park, Y. C., J. H. Choi, G. N. Bennett, and J. H. Seo. 2006. Characterization of D-ribose biosynthesis in Bacillus subtilis JY200 deficient in transketolase gene. J. Biotechnol. 121: 508-516. https://doi.org/10.1016/j.jbiotec.2005.08.003
  5. Park, Y. C., S. G. Kim, K. Park, K. H. Lee, and J. H. Seo. 2004. Fed-batch production of D-ribose from sugar mixtures by transketolase-deficient Bacillus subtilis SPK1. Appl. Microbiol. Biotechnol. 66: 297-302. https://doi.org/10.1007/s00253-004-1678-3
  6. Park, Y. C. and J. H. Seo. 2004. Optimization of culture conditions for D-ribose production by transketolase-deficient Bacillus subtilis JY1. J. Microbiol. Biotechnol. 14: 665-672.
  7. Shuler, M. L. and F. Kargi. 2002. Bioprocess Engineering: Basic Concepts, 2nd Ed. Prentice Hall.
  8. Srivastava, R., S. Maiti, D. Das, P. Bapat, K. Batta, M. Bhushan, and P. Wangikar. 2012. Metabolic flexibility of Dribose producer strain of Bacillus pumilus under environmental perturbations. J. Ind. Microbiol. Biotechnol. 39: 1227-1243. https://doi.org/10.1007/s10295-012-1115-z
  9. Srivastava, R. K. and P. P. Wangikar. 2008. Combined effects of carbon, nitrogen and phosphorus substrates on D-ribose production via transketolase deficient strain of Bacillus pumilus. J. Chem. Technol. Biotechnol. 83: 1110-1119. https://doi.org/10.1002/jctb.1936
  10. Stülke, J. and W. Hillen. 2000. Regulation of carbon catabolism in Bacillus species. Annu. Rev. Microbiol. 54: 849-880. https://doi.org/10.1146/annurev.micro.54.1.849
  11. Wu, L., Z. Li, and Q. Ye. 2009. Enhanced D-ribose biosynthesis in batch culture of a transketolase-deficient Bacillus subtilis strain by citrate. J. Ind. Microbiol. Biotechnol. 36: 1289-1296. https://doi.org/10.1007/s10295-009-0612-1
  12. Wulf, P. D. and E. J. Vandamme. 1997. Production of D-ribose by fermentation. Appl. Microbiol. Biotechnol. 48: 141-148. https://doi.org/10.1007/s002530051029

Cited by

  1. Enhanced D-ribose production by genetic modification and medium optimization in Bacillus subtilis 168 vol.35, pp.5, 2013, https://doi.org/10.1007/s11814-017-0356-y
  2. Pentose metabolism and conversion to biofuels and high-value chemicals in yeasts vol.45, pp.4, 2013, https://doi.org/10.1093/femsre/fuaa069