• Title/Summary/Keyword: Production Lead Time

Search Result 343, Processing Time 0.026 seconds

Web-based Draft Verification System for Injection Mold Design (사출금형설계를 위한 웹기반 구배 검증 시스템)

  • Yeon Kwang-Heum;Song In-Ho;Chung Sung-Chong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.10 s.241
    • /
    • pp.1353-1360
    • /
    • 2005
  • Injection-molded products serve a wide range of applications in our modem lives and their significance is ever increasing. However, difficulty of communication among related companies under the present system results in increase of lead time and decrease of production efficiency. The objective of this paper is the development of a web-based draft verification system in mold design processes. Although several commercial CAD systems offer draft verification functions, those systems are very expensive and inadequate to perform collaborative works. For collaborative work under the distributed environment, the proposed system uses native file transforming of CAD data into optimal format by using the ACIS kernel and InterOp. Functions of draft verification modules are constructed over the ActiveX control using the visual C++ and OpenGL. Therefore, collaborators related to the development of a new product are able to verify the draft and undercut over the Internet without commercial CAD systems. The system helps to reduce production cost, errors and lead-time to the market. Performance of the system is confirmed through various case studies.

Robust Design Method for Complex Stochastic Inventory Model

  • Hwang, In-Keuk;Park, Dong-Jin
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1999.04a
    • /
    • pp.426-426
    • /
    • 1999
  • ;There are many sources of uncertainty in a typical production and inventory system. There is uncertainty as to how many items customers will demand during the next day, week, month, or year. There is uncertainty about delivery times of the product. Uncertainty exacts a toll from management in a variety of ways. A spurt in a demand or a delay in production may lead to stockouts, with the potential for lost revenue and customer dissatisfaction. Firms typically hold inventory to provide protection against uncertainty. A cushion of inventory on hand allows management to face unexpected demands or delays in delivery with a reduced chance of incurring a stockout. The proposed strategies are used for the design of a probabilistic inventory system. In the traditional approach to the design of an inventory system, the goal is to find the best setting of various inventory control policy parameters such as the re-order level, review period, order quantity, etc. which would minimize the total inventory cost. The goals of the analysis need to be defined, so that robustness becomes an important design criterion. Moreover, one has to conceptualize and identify appropriate noise variables. There are two main goals for the inventory policy design. One is to minimize the average inventory cost and the stockouts. The other is to the variability for the average inventory cost and the stockouts The total average inventory cost is the sum of three components: the ordering cost, the holding cost, and the shortage costs. The shortage costs include the cost of the lost sales, cost of loss of goodwill, cost of customer dissatisfaction, etc. The noise factors for this design problem are identified to be: the mean demand rate and the mean lead time. Both the demand and the lead time are assumed to be normal random variables. Thus robustness for this inventory system is interpreted as insensitivity of the average inventory cost and the stockout to uncontrollable fluctuations in the mean demand rate and mean lead time. To make this inventory system for robustness, the concept of utility theory will be used. Utility theory is an analytical method for making a decision concerning an action to take, given a set of multiple criteria upon which the decision is to be based. Utility theory is appropriate for design having different scale such as demand rate and lead time since utility theory represents different scale across decision making attributes with zero to one ranks, higher preference modeled with a higher rank. Using utility theory, three design strategies, such as distance strategy, response strategy, and priority-based strategy. for the robust inventory system will be developed.loped.

  • PDF

A Study on Scheduling by Customer Needs Group (고객 요구 집단에 의한 일정계획 수립에 관한 연구)

  • 양광모;박재현;강경식
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2002.11a
    • /
    • pp.233-238
    • /
    • 2002
  • The product process is sequence of all the required activities that a company must perform to develop, and manufacture a product. These activities include marketing, research, engineering design, quality assurance, manufacturing, and a whole chain of suppliers and vendors. The process also comprises all strategic planning, capital investments, management decisions, and tasks necessary to create a new product. manufacturing processes must be created so that the product can be produced in the product facility Purchasing new equipment and training workers may be required if new technology is to be used. Tools, fixtures, and the sequence of steps in the manufacturing processes must all be developed to allow rapid, high-quality, cost effective production. Also, it may be needed to be rearrange the production facility to adapt to the new manufacturing processes. Therefore, this study tries to proposed that Scheduling by customer needs group for minimizing the problem and reducing inventory, product development time, cycle time, and order lead time.

  • PDF

Manufacturing Technology and Provenance of the Lead Beads (납환의 제작방법 및 납동위원소비 특성 연구)

  • Kim, So-jin;Hwang, Jin-ju;Han, Woo-rim;Lee, Eun- woo;Rim, Seok-gyu;Jeong, Youn-joong
    • Korean Journal of Heritage: History & Science
    • /
    • v.47 no.4
    • /
    • pp.48-57
    • /
    • 2014
  • More than 30 lead beads have been excavated from buddhist temples and sites but the production times are unknown the origin. The aim of this study is to estimate manufacturing technique and provenance of 11 beads through the chemical composition and isotope analysis. Results shows that the lead beads are composed of high-purity lead and cast using for 2 semicircle moulds. Furthermore, 11 lead beads are similar in size, chemical composition and casting methods. Lead isotope analysis data suggest that the provenance of lead beads are not Korea peninsula. Also it is estimated that 11 lead beads were divided in 2 groups considering the time and places of production. The future works will be executed additional scientific analysis and historical background due to confirm the manufacturing system and provenance.

The Optimal Base-Stock Level in Assembly lines (조립 생산 시스템에서 최적 Base-Stock 수준)

  • Ko, Sung-Seok;Seo, Dong-Won
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.30 no.3
    • /
    • pp.89-93
    • /
    • 2007
  • In this study, we consider an assembly line operated under a base-stock policy. A product consists of two parts, and a finished product transfers to a warehouse in which demands are satisfied. Assume that demands arrive according to a Poisson process and processing times at each production line are exponentially distributed. Whenever a demand arrives, it is satisfied immediately from an inventory in the warehouse if available; otherwise, it is backlogged and satisfied later by the next product exiting from production lines. In either case, an arriving demand automatically triggers the production of a part at both production lines. These two parts will be assembled into a product that eventually transfers to the warehouse. We obtain a closed form formula of approximation for delay time or lead time distribution of a demand when a base- stock level is s. Moreover, it can be applied to the optimal base-stock level which minimizes the total inventory cost. Numerical examples are presented to show our optimal base-stock level's quality.

Supplier Selection and Assignment of Order Quantities to suppliers for the Efficient Purchasing Management in Supply Chain Management (공급사슬경영에서의 효율적인 구매 관리를 위한 공급자 선택 및 주문량 할당에 관한 연구)

  • 정주기;이영해
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2000.10a
    • /
    • pp.99-102
    • /
    • 2000
  • In the supply chain network design, how to select the best location, capacity configuration of the suppliers and to assign manufacturers orders are a challenging issue. Especially when multi-tiers'suppliers are existed, the performance of supply chain is influenced by 2$\^$nd/ and 3$\^$rd/ suppliers. Supplier selection is multi-criteria problem which includes both qualitative and quantitative factors in supply chains. In order to select the best supplier it is necessary to make a trade off between these two factors such as cost, product quality, capacity, production lead time, deliver lead time and transportation lead tine of supplier constraints existed in multi-tiers supplier purchasing chain. In these circumstances, purchasing agents should decide two problems: which is the best supplier in each tier and how much should be purchased from each selected supplier. This research is intended to develop an integration of an analytical hierarchy process (AHP) and mathematical modeling proposed to consider two factors which may be conflicted in choosing the best supplier in each tier and placing the optimum order quantities to the supplier among multi-tiers suppliers.

  • PDF

Application of Process Planning System for Non-Axisymmetric Deep Drawing Products (비축대칭 디프 드로잉 제품에 대한 공정설계 시스템의 적용)

  • 박동환;최병근;박상봉;강성수
    • Transactions of Materials Processing
    • /
    • v.8 no.6
    • /
    • pp.591-603
    • /
    • 1999
  • A computer-aided process planning system for rotationally symmetric deep drawing products has been developed. The application for non-axisymmetric components, however, has been reported yet. Therefore, this study investigates process sequence design in deep drawing process and constructs a computer-aided process planning system for non-axisymmetric motor frame products with elliptical shape. The system developed consists of three modules. The first one os a 3-dimensional modeling module to calculate surface area for non-axisymmetric products. The second one is a blank design module that creates an oval-shaped blank with the identical surface area. The third one is a process planning module based on production rules that play the best important roles in an expert system for manufacturing. The production rules are generated and upgraded by interviewing with field engineers. Especially, drawing coefficient, punch and die radii are considered as main design parameters. The constructed system for elliptical deep drawing products would be very useful to reduce lead time and improve accuracy for production.

  • PDF

A Basic Study of Dynamic Simulation Model for In-situ Production and Erection of Precast Concrete Members (PC의 현장생산-설치 통합관리를 위한 동적 시뮬레이션 모델 기초연구)

  • Son, Seung-Hyun;Kim, Ki-Ho;Kim, Sun-Kuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.42-43
    • /
    • 2019
  • In-situ production of PC (precast concrete) members can reduce costs by about 14.5% -21.6% compared to in-plant production due to the reduction of transportation costs, factory profits and overhead costs. However, in-situ production of PC members presents a variety of risks, including member production and yard area securing, and lead time for production within the installation period. To solve this, it is necessary be able to analyze and control and monitor the risk factors that influence in-situ production for PC member. The purpose of this study is to develop a dynamic simulation model for in-situ production and erection integrated management for PC members. For this study, risk factor identification, causal loop diagram, and dynamic simulation model construction were performed sequentially. The results of this study will be used as a basis for developing a risk management model for PC in-situ production.

  • PDF

The Effectiveness of Order Release Strategies considering Production Plan and Dispatching Rules (생산계획 및 우선순위규칙에 따른 Order Release 정책의 유효성에 관한 연구)

  • 최병대;이기창;박찬권;박진우
    • Journal of the Korea Society for Simulation
    • /
    • v.8 no.4
    • /
    • pp.73-87
    • /
    • 1999
  • Order Review/Release (ORR) System is the linkage between planning system and actual production. Reduction of the waiting time on the machines, work in process and lead time variation may be achieved by adopting ORR strategies. But researchers on the ORR do not agree on the effectiveness of ORR. Some say that the overall system flow time may be increased if ORR is adopted, but others say that ORR can reduce work in process, flow time and variation of flow time. The objective of this research is to clarify under what environments order release strategy is effective. Simulation study was conducted in a hypothetical job shop. The experimental results show that dispatching rule is much more important than ORR is in controlling the shop floor. But the results indicate that ORR can reduce mean shop flow time, average work in process and variation of shop flow time under such environments where utilization level is high and planned order is weekly released to the order pool. And the results also show that the effect of plan smoothing on the ORR is insignificant, which is inconsistent with the results of the previous researches.

  • PDF

A Simulation Study for Evaluation of Alternative Plans and Making the Upper-limit for Improvement in Productivity of Flow-shop with Considering a Work-wait Time (흐름생산 공정에서의 작업 대기시간을 고려한 공정 개선 상한선 도출 : H사의 공정 개선 계획안 시뮬레이션 사례를 중심으로)

  • Song, Young-Joo;Woo, Jong-Hun;Lee, Don-Kun;Shin, Jong-Gye
    • Journal of the Korea Society for Simulation
    • /
    • v.17 no.2
    • /
    • pp.63-74
    • /
    • 2008
  • The design of best efficient production process is common requirements of the production strategy department and the process planning department to maximize the revenue and accomplish target production volumes in the production periods. And they use several general methods for that-line-balancing, removing of the bottle-neck process, facility ramp-up, increasing of the worker's utilization, etc. But, those methods have depended on analytic, static and arithmetic calculations, yet. So, irregular work-waiting time causing the delay time isn't include in extracting production capacity, especially in the line production process. The work-waiting time is changed irregularly along the variation of each machine and very important for calculate real product lead-time and forecasting target production volumes. At this thesis, i'm going to mention the importance of the delay time of conveyor system which can be extracted by discrete-event simulation. And suggest it as a new main variable that must be considered at designing new production system. Then experimented and tested that's effects in the H-company case, conveyor based line production process.

  • PDF