• 제목/요약/키워드: Product review summarization

검색결과 9건 처리시간 0.02초

상품특징별 점수화를 이용한 상품리뷰요약 시스템의 설계 및 구현 (A product review summarization system using a scoring of features)

  • 양정연;명재석;이상구
    • 한국데이타베이스학회:학술대회논문집
    • /
    • 한국데이타베이스학회 2008년도 연합학회학술대회
    • /
    • pp.339-347
    • /
    • 2008
  • 온라인 마켓에 수많은 상품정보가 공개됨에 따라, 소비자들은 장소나 시간에 구애 받지 않고 자신이 원하는 상품을 구매할 수 있게 되었다. 하지만, 온라인 마켓의 경우 소비자들이 직접 상품을 살펴볼 수 없기 때문에, 다른 사람의 상품리뷰가 구매 의사결정에 많은 영향을 미친다. 한편, 많은 수의 리뷰를 모두 살펴보는 것은 구매자에게 부담으로 느껴진다. 이에 따라 많은 양의 상품리뷰를 분석하여 소비자에게 정제된 정보를 제공할 필요성이 제기되고 있다. 본 논문에서는 자연어처리 및 통계적 분석을 활용하여 상품의 특징을 추출하고, 각 특징별 평가점수를 소비자에게 제공하여 상품의 장단점을 보다 쉽고 정확하게 알 수 있도록 하는 상품평가 시스템의 설계 및 구현에 대하여 다루었다. 상품특징별 평가를 소비자에게 제공함으로써, 소비자는 자신의 취향에 맞는 상품을 선택할 수 있는 기회를 얻을 수 있으며, 기업은 소비자의 상품에 대한 선호정보를 보다 구체적으로 파악할 수 있을 것으로 기대된다.

  • PDF

상품 리뷰 요약에서의 문맥 정보를 이용한 의견 분류 방법 (A Sentiment Classification Method Using Context Information in Product Review Summarization)

  • 양정연;명재석;이상구
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제36권4호
    • /
    • pp.254-262
    • /
    • 2009
  • e비즈니스가 활발히 이루어지면서 소비자들은 온라인 쇼핑몰올 통해 수많은 상품을 접할 수 있게 되었고, 상품구매 시 다른 사람들의 리뷰를 참고하게 되었다. 하지만, 리뷰의 수도 많아짐에 따라 소비자가 모든 리뷰들을 살펴보기가 힘들다는 문제점이 대두되었으며 이를 해결하기 위해서 리뷰의 상품에 대한 평가를 요약하고 성향을 파악하는 오피니언 마이닝 연구가 나타나게 되었다. 본 논문에서는 상품리뷰를 대상으로 오피니언 마이닝을 수행하는 경우 어휘의 의견 성향을 파악할 때, 문맥정보를 활용하여 기존의 의견분류방법 보다 좀 더 정확한 의견 판단이 가능한 방법에 대해 다루고 있다. 이를 위해, 어휘가 사용될 때의 문맥정보를 정의하고 이를 의견분류에 적용하는 방법을 제안하였으며, 실험을 통하여 기존 연구 보다 상황별 알맞은 의견분류가 가능함을 보였다. 또한 수작업으로 말뭉치의 핵심 어휘들을 정의했던 기존 연구들에서의 방식에서 벗어나, 리뷰본문과 리뷰점수를 활용하여 자동으로 상황에 맞는 말뭉치를 구축하는 방법도 제안하였다. 이를 통해 상품리뷰에 나타난 어휘들의 문맥에 맞는 의미 성향을 정확하고 쉽게 판별해 낼 수 있게 되었다.

상품평의 언어적 분석을 통한 상품 평가 요약 시스템 (Product Evaluation Summarization Through Linguistic Analysis of Product Reviews)

  • 이우철;이현아;이공주
    • 정보처리학회논문지B
    • /
    • 제17B권1호
    • /
    • pp.93-98
    • /
    • 2010
  • 본 논문에서는 폭발적으로 증가하고 있는 상품평을 효과적으로 활용하기 위해 언어적 분석을 통하여 상품 평가를 요약하는 시스템을 제안한다. 시스템에서는 스커트 상품 분류의 경우 '디자인'과 '재질'과 같이, 상품을 평가하는 기준이 되는 항목에 대한 상품평의 부정과 긍정의 극성 여부를 판별하여 그래프 형태로 요약하여 제시한다. 본 논문에서는 작은 시드 어휘와 문맥에 기반한 자동 확장 방법을 사용하여 평가 항목 별 평가 어휘 극성 사전을 구축하여 평가 항목에 대한 상품평의 극성을 판정한다. 제안한 방식은 여러 온라인 쇼핑몰의 실제 상품평에 대한 실험에서 극성 사전 추출에서 평균 69.8%의 정확율과 문장별 극성 식별에서 평균 81.8%의 정확율을 보였다.

효율적인 상품평 분석을 위한 어휘 통계 정보 기반 평가 항목 추출 시스템 (Automatic Product Feature Extraction for Efficient Analysis of Product Reviews Using Term Statistics)

  • 이우철;이현아;이공주
    • 정보처리학회논문지B
    • /
    • 제16B권6호
    • /
    • pp.497-502
    • /
    • 2009
  • 본 논문에서는 상품평의 효율적인 분석을 위한 평가 항목 추출 시스템을 제안한다. 시스템은 크게 상품평 수집-보정과 평가 항목 추출의 두 단계로 구성된다. 상품평 수집-보정에서는 인터넷 쇼핑몰에서 상품평을 수집하고 상품평 특유의 구어체 표현과 맞춤법 오류 등을 처리한다. 평가 항목 추출에서는 스커트 상품 카테고리의 경우 ‘사이즈', ‘스타일'과 같이 상품을 평가하는 기준이 되는 항목을 상품평과 인터넷 상의 웹 문서를 활용하여 자동으로 추출한다. 상품평에 나타나는 명사들을 평가 항목 후보로 설정하고, 각 후보 명사의 상품평에서의 어휘 통계인 내부연관도와, 후보 명사와 상품 카테고리명의 웹 문서에서의 공기 빈도에 기반하여 계산된 외부연관도를 결합하여 상품과 평가 항목 후보의 연관도를 계산한다. 본 논문의 평가 항목 추출 방식은 평균 재현율 90%를 보여 기존 연구보다 우수한 결과를 보였다.

설명 가능한 개인화 영화 추천 서비스를 위한 딥러닝 기반 텍스트 요약 모델 (Deep Learning-based Text Summarization Model for Explainable Personalized Movie Recommendation Service)

  • 진요요;강경모;김재경
    • 한국IT서비스학회지
    • /
    • 제21권2호
    • /
    • pp.109-126
    • /
    • 2022
  • The number and variety of products and services offered by companies have increased dramatically, providing customers with more choices to meet their needs. As a solution to this information overload problem, the provision of tailored services to individuals has become increasingly important, and the personalized recommender systems have been widely studied and used in both academia and industry. Existing recommender systems face important problems in practical applications. The most important problem is that it cannot clearly explain why it recommends these products. In recent years, some researchers have found that the explanation of recommender systems may be very useful. As a result, users are generally increasing conversion rates, satisfaction, and trust in the recommender system if it is explained why those particular items are recommended. Therefore, this study presents a methodology of providing an explanatory function of a recommender system using a review text left by a user. The basic idea is not to use all of the user's reviews, but to provide them in a summarized form using only reviews left by similar users or neighbors involved in recommending the item as an explanation when providing the recommended item to the user. To achieve this research goal, this study aims to provide a product recommendation list using user-based collaborative filtering techniques, combine reviews left by neighboring users with each product to build a model that combines text summary methods among deep learning-based natural language processing methods. Using the IMDb movie database, text reviews of all target user neighbors' movies are collected and summarized to present descriptions of recommended movies. There are several text summary methods, but this study aims to evaluate whether the review summary is well performed by training the Sequence-to-sequence+attention model, which is a representative generation summary method, and the BertSum model, which is an extraction summary model.

상품평 분석을 통한 상품 평가 요약 시스템 (Product Review Summarization through Review Sentence Analysis)

  • 김제상;정군영;권인호;이현아
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2013년도 제25회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.113-115
    • /
    • 2013
  • 다수의 상품평 요약은 인터넷 쇼핑몰 고객에게 편의를 제공할 수 있다. 본 논문에서는 상품평 요약 시스템의 성능 향상을 위한 방안을 제안한다. 시스템은 크게 상품평의 평가 항목 추출과 극성 사전 생성, 극성 판별 단계로 구성된다. 평가 항목 추출에서는 외부 연관도의 영향력을 줄이고, 극성 사전 생성에서는 단어 거리 평균을 적용한다. 제안한 방식을 사용하였을 때 평가 항목에 대한 문장의 극성 판별 시 90.8%의 정확율을 보였다.

  • PDF

상품리뷰요약을 위한 대체어 자동추출 (Automatic Extraction of Alternative Words for Product Review Summarization)

  • 안미희;백종범;이수원
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2012년도 한국컴퓨터종합학술대회논문집 Vol.39 No.1(B)
    • /
    • pp.501-503
    • /
    • 2012
  • 오피니언 마이닝에서 특징기반으로 상품평을 요약할 때, 동일한 상품의 같은 특징에 대한 사용자의 표현이 일치하지 않아 같은 특징을 다른 것으로 인식하는 오류가 발생되어 효과적인 분석을 하는데 어려움이 있다. 본 연구에서는 이러한 문제점을 해결하기 위하여 온라인쇼핑몰의 상품평에서 명사와 형용사쌍 말뭉치를 이용하여 연관단어뭉치를 추출하고, 상관성이 높은 형용사를 각 명사의 특징으로 이용하여 대체어 목록을 자동으로 추출하는 방법을 제안한다.

잠재 토픽 기반의 제품 평판 마이닝 (Latent topics-based product reputation mining)

  • 박상민;온병원
    • 지능정보연구
    • /
    • 제23권2호
    • /
    • pp.39-70
    • /
    • 2017
  • 최근 여론조사 분야에서 데이터에 기반을 둔 분석 기법이 널리 활용되고 있다. 기업에서는 최근 출시된 제품에 대한 선호도를 조사하기 위해 기존의 설문조사나 전문가의 의견을 단순 취합하는 것이 아니라, 온라인상에 존재하는 다양한 종류의 데이터를 수집하고 분석하여 제품에 대한 대중의 기호를 정확히 파악할 수 있는 방안을 필요로 한다. 기존의 주요 방안에서는 먼저 해당 분야에 대한 감성사전을 구축한다. 전문가들은 수집된 텍스트 문서들로부터 빈도가 높은 단어들을 정리하여 긍정, 부정, 중립을 판단한다. 특정 제품의 선호를 판별하기 위해, 제품에 대한 사용 후기 글을 수집하여 문장을 추출하고, 감성사전을 이용하여 문장들의 긍정, 부정, 중립을 판단하여 최종적으로 긍정과 부정인 문장의 개수를 통해 제품에 대한 선호도를 측정한다. 그리고 제품에 대한 긍 부정 내용을 자동으로 요약하여 제공한다. 이것은 문장들의 감성점수를 산출하여, 긍정과 부정점수가 높은 문장들을 추출한다. 본 연구에서는 일반 대중이 생산한 문서 속에 숨겨져 있는 토픽을 추출하여 주어진 제품의 선호도를 조사하고, 토픽의 긍 부정 내용을 요약하여 보여주는 제품 평판 마이닝 알고리즘을 제안한다. 기존 방식과 다르게, 토픽을 활용하여 쉽고 빠르게 감성사전을 구축할 수 있으며 추출된 토픽을 정제하여 제품의 선호도와 요약 결과의 정확도를 높인다. 실험을 통해, K5, SM5, 아반떼 등의 국내에서 생산된 자동차의 수많은 후기 글들을 수집하였고, 실험 자동차의 긍 부정 비율, 긍 부정 내용 요약, 통계 검정을 실시하여 제안방안의 효용성을 입증하였다.

Understanding Smartphone-based Online Shopping Experiences and Behaviors of Blind Users

  • Park, Jihyuk;Han, Yeji;Oh, Uran
    • International journal of advanced smart convergence
    • /
    • 제9권3호
    • /
    • pp.260-271
    • /
    • 2020
  • Smartphones provide blind users with screenreader as an accessibility tool. However, blind users often experience difficulties accessing online shopping malls via smartphones due to their inconsistent and image-based layouts. To enable screenreader users to get access to the detailed information about products while they are shopping online, we have developed BarrierFreeShop, an accessible mobile shopping application for people with visual impairments. BarrierFreeShop has three accessibility features: (1) layout automation, (2) review summarization, and (3) optical character recognition. We conducted a user study with 80 participants with visual impairments where they were asked to use BarrierFreeShop for a month. The findings revealed the effectiveness of our app in terms of speed and post interview feedback. We have also discovered typical shopping experiences that participants had during the test. This research suggests that computer vision technologies can improve accessibility issues in online shopping malls. In addition, we have confirmed that extracting contents from images help people with visual impairments to get better access to product information.