온라인 마켓에 수많은 상품정보가 공개됨에 따라, 소비자들은 장소나 시간에 구애 받지 않고 자신이 원하는 상품을 구매할 수 있게 되었다. 하지만, 온라인 마켓의 경우 소비자들이 직접 상품을 살펴볼 수 없기 때문에, 다른 사람의 상품리뷰가 구매 의사결정에 많은 영향을 미친다. 한편, 많은 수의 리뷰를 모두 살펴보는 것은 구매자에게 부담으로 느껴진다. 이에 따라 많은 양의 상품리뷰를 분석하여 소비자에게 정제된 정보를 제공할 필요성이 제기되고 있다. 본 논문에서는 자연어처리 및 통계적 분석을 활용하여 상품의 특징을 추출하고, 각 특징별 평가점수를 소비자에게 제공하여 상품의 장단점을 보다 쉽고 정확하게 알 수 있도록 하는 상품평가 시스템의 설계 및 구현에 대하여 다루었다. 상품특징별 평가를 소비자에게 제공함으로써, 소비자는 자신의 취향에 맞는 상품을 선택할 수 있는 기회를 얻을 수 있으며, 기업은 소비자의 상품에 대한 선호정보를 보다 구체적으로 파악할 수 있을 것으로 기대된다.
e비즈니스가 활발히 이루어지면서 소비자들은 온라인 쇼핑몰올 통해 수많은 상품을 접할 수 있게 되었고, 상품구매 시 다른 사람들의 리뷰를 참고하게 되었다. 하지만, 리뷰의 수도 많아짐에 따라 소비자가 모든 리뷰들을 살펴보기가 힘들다는 문제점이 대두되었으며 이를 해결하기 위해서 리뷰의 상품에 대한 평가를 요약하고 성향을 파악하는 오피니언 마이닝 연구가 나타나게 되었다. 본 논문에서는 상품리뷰를 대상으로 오피니언 마이닝을 수행하는 경우 어휘의 의견 성향을 파악할 때, 문맥정보를 활용하여 기존의 의견분류방법 보다 좀 더 정확한 의견 판단이 가능한 방법에 대해 다루고 있다. 이를 위해, 어휘가 사용될 때의 문맥정보를 정의하고 이를 의견분류에 적용하는 방법을 제안하였으며, 실험을 통하여 기존 연구 보다 상황별 알맞은 의견분류가 가능함을 보였다. 또한 수작업으로 말뭉치의 핵심 어휘들을 정의했던 기존 연구들에서의 방식에서 벗어나, 리뷰본문과 리뷰점수를 활용하여 자동으로 상황에 맞는 말뭉치를 구축하는 방법도 제안하였다. 이를 통해 상품리뷰에 나타난 어휘들의 문맥에 맞는 의미 성향을 정확하고 쉽게 판별해 낼 수 있게 되었다.
본 논문에서는 폭발적으로 증가하고 있는 상품평을 효과적으로 활용하기 위해 언어적 분석을 통하여 상품 평가를 요약하는 시스템을 제안한다. 시스템에서는 스커트 상품 분류의 경우 '디자인'과 '재질'과 같이, 상품을 평가하는 기준이 되는 항목에 대한 상품평의 부정과 긍정의 극성 여부를 판별하여 그래프 형태로 요약하여 제시한다. 본 논문에서는 작은 시드 어휘와 문맥에 기반한 자동 확장 방법을 사용하여 평가 항목 별 평가 어휘 극성 사전을 구축하여 평가 항목에 대한 상품평의 극성을 판정한다. 제안한 방식은 여러 온라인 쇼핑몰의 실제 상품평에 대한 실험에서 극성 사전 추출에서 평균 69.8%의 정확율과 문장별 극성 식별에서 평균 81.8%의 정확율을 보였다.
본 논문에서는 상품평의 효율적인 분석을 위한 평가 항목 추출 시스템을 제안한다. 시스템은 크게 상품평 수집-보정과 평가 항목 추출의 두 단계로 구성된다. 상품평 수집-보정에서는 인터넷 쇼핑몰에서 상품평을 수집하고 상품평 특유의 구어체 표현과 맞춤법 오류 등을 처리한다. 평가 항목 추출에서는 스커트 상품 카테고리의 경우 ‘사이즈', ‘스타일'과 같이 상품을 평가하는 기준이 되는 항목을 상품평과 인터넷 상의 웹 문서를 활용하여 자동으로 추출한다. 상품평에 나타나는 명사들을 평가 항목 후보로 설정하고, 각 후보 명사의 상품평에서의 어휘 통계인 내부연관도와, 후보 명사와 상품 카테고리명의 웹 문서에서의 공기 빈도에 기반하여 계산된 외부연관도를 결합하여 상품과 평가 항목 후보의 연관도를 계산한다. 본 논문의 평가 항목 추출 방식은 평균 재현율 90%를 보여 기존 연구보다 우수한 결과를 보였다.
The number and variety of products and services offered by companies have increased dramatically, providing customers with more choices to meet their needs. As a solution to this information overload problem, the provision of tailored services to individuals has become increasingly important, and the personalized recommender systems have been widely studied and used in both academia and industry. Existing recommender systems face important problems in practical applications. The most important problem is that it cannot clearly explain why it recommends these products. In recent years, some researchers have found that the explanation of recommender systems may be very useful. As a result, users are generally increasing conversion rates, satisfaction, and trust in the recommender system if it is explained why those particular items are recommended. Therefore, this study presents a methodology of providing an explanatory function of a recommender system using a review text left by a user. The basic idea is not to use all of the user's reviews, but to provide them in a summarized form using only reviews left by similar users or neighbors involved in recommending the item as an explanation when providing the recommended item to the user. To achieve this research goal, this study aims to provide a product recommendation list using user-based collaborative filtering techniques, combine reviews left by neighboring users with each product to build a model that combines text summary methods among deep learning-based natural language processing methods. Using the IMDb movie database, text reviews of all target user neighbors' movies are collected and summarized to present descriptions of recommended movies. There are several text summary methods, but this study aims to evaluate whether the review summary is well performed by training the Sequence-to-sequence+attention model, which is a representative generation summary method, and the BertSum model, which is an extraction summary model.
다수의 상품평 요약은 인터넷 쇼핑몰 고객에게 편의를 제공할 수 있다. 본 논문에서는 상품평 요약 시스템의 성능 향상을 위한 방안을 제안한다. 시스템은 크게 상품평의 평가 항목 추출과 극성 사전 생성, 극성 판별 단계로 구성된다. 평가 항목 추출에서는 외부 연관도의 영향력을 줄이고, 극성 사전 생성에서는 단어 거리 평균을 적용한다. 제안한 방식을 사용하였을 때 평가 항목에 대한 문장의 극성 판별 시 90.8%의 정확율을 보였다.
오피니언 마이닝에서 특징기반으로 상품평을 요약할 때, 동일한 상품의 같은 특징에 대한 사용자의 표현이 일치하지 않아 같은 특징을 다른 것으로 인식하는 오류가 발생되어 효과적인 분석을 하는데 어려움이 있다. 본 연구에서는 이러한 문제점을 해결하기 위하여 온라인쇼핑몰의 상품평에서 명사와 형용사쌍 말뭉치를 이용하여 연관단어뭉치를 추출하고, 상관성이 높은 형용사를 각 명사의 특징으로 이용하여 대체어 목록을 자동으로 추출하는 방법을 제안한다.
최근 여론조사 분야에서 데이터에 기반을 둔 분석 기법이 널리 활용되고 있다. 기업에서는 최근 출시된 제품에 대한 선호도를 조사하기 위해 기존의 설문조사나 전문가의 의견을 단순 취합하는 것이 아니라, 온라인상에 존재하는 다양한 종류의 데이터를 수집하고 분석하여 제품에 대한 대중의 기호를 정확히 파악할 수 있는 방안을 필요로 한다. 기존의 주요 방안에서는 먼저 해당 분야에 대한 감성사전을 구축한다. 전문가들은 수집된 텍스트 문서들로부터 빈도가 높은 단어들을 정리하여 긍정, 부정, 중립을 판단한다. 특정 제품의 선호를 판별하기 위해, 제품에 대한 사용 후기 글을 수집하여 문장을 추출하고, 감성사전을 이용하여 문장들의 긍정, 부정, 중립을 판단하여 최종적으로 긍정과 부정인 문장의 개수를 통해 제품에 대한 선호도를 측정한다. 그리고 제품에 대한 긍 부정 내용을 자동으로 요약하여 제공한다. 이것은 문장들의 감성점수를 산출하여, 긍정과 부정점수가 높은 문장들을 추출한다. 본 연구에서는 일반 대중이 생산한 문서 속에 숨겨져 있는 토픽을 추출하여 주어진 제품의 선호도를 조사하고, 토픽의 긍 부정 내용을 요약하여 보여주는 제품 평판 마이닝 알고리즘을 제안한다. 기존 방식과 다르게, 토픽을 활용하여 쉽고 빠르게 감성사전을 구축할 수 있으며 추출된 토픽을 정제하여 제품의 선호도와 요약 결과의 정확도를 높인다. 실험을 통해, K5, SM5, 아반떼 등의 국내에서 생산된 자동차의 수많은 후기 글들을 수집하였고, 실험 자동차의 긍 부정 비율, 긍 부정 내용 요약, 통계 검정을 실시하여 제안방안의 효용성을 입증하였다.
International journal of advanced smart convergence
/
제9권3호
/
pp.260-271
/
2020
Smartphones provide blind users with screenreader as an accessibility tool. However, blind users often experience difficulties accessing online shopping malls via smartphones due to their inconsistent and image-based layouts. To enable screenreader users to get access to the detailed information about products while they are shopping online, we have developed BarrierFreeShop, an accessible mobile shopping application for people with visual impairments. BarrierFreeShop has three accessibility features: (1) layout automation, (2) review summarization, and (3) optical character recognition. We conducted a user study with 80 participants with visual impairments where they were asked to use BarrierFreeShop for a month. The findings revealed the effectiveness of our app in terms of speed and post interview feedback. We have also discovered typical shopping experiences that participants had during the test. This research suggests that computer vision technologies can improve accessibility issues in online shopping malls. In addition, we have confirmed that extracting contents from images help people with visual impairments to get better access to product information.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.