• Title/Summary/Keyword: Product classification method

Search Result 176, Processing Time 0.022 seconds

Intensified Sentiment Analysis of Customer Product Reviews Using Acoustic and Textual Features

  • Govindaraj, Sureshkumar;Gopalakrishnan, Kumaravelan
    • ETRI Journal
    • /
    • v.38 no.3
    • /
    • pp.494-501
    • /
    • 2016
  • Sentiment analysis incorporates natural language processing and artificial intelligence and has evolved as an important research area. Sentiment analysis on product reviews has been used in widespread applications to improve customer retention and business processes. In this paper, we propose a method for performing an intensified sentiment analysis on customer product reviews. The method involves the extraction of two feature sets from each of the given customer product reviews, a set of acoustic features (representing emotions) and a set of lexical features (representing sentiments). These sets are then combined and used in a supervised classifier to predict the sentiments of customers. We use an audio speech dataset prepared from Amazon product reviews and downloaded from the YouTube portal for the purposes of our experimental evaluations.

Deep Learning-based Approach for Classification of Tribological Time Series Data for Hand Creams (딥러닝을 이용한 핸드크림의 마찰 시계열 데이터 분류)

  • Kim, Ji Won;Lee, You Min;Han, Shawn;Kim, Kyeongtaek
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.3
    • /
    • pp.98-105
    • /
    • 2021
  • The sensory stimulation of a cosmetic product has been deemed to be an ancillary aspect until a decade ago. That point of view has drastically changed on different levels in just a decade. Nowadays cosmetic formulators should unavoidably meet the needs of consumers who want sensory satisfaction, although they do not have much time for new product development. The selection of new products from candidate products largely depend on the panel of human sensory experts. As new product development cycle time decreases, the formulators wanted to find systematic tools that are required to filter candidate products into a short list. Traditional statistical analysis on most physical property tests for the products including tribology tests and rheology tests, do not give any sound foundation for filtering candidate products. In this paper, we suggest a deep learning-based analysis method to identify hand cream products by raw electric signals from tribological sliding test. We compare the result of the deep learning-based method using raw data as input with the results of several machine learning-based analysis methods using manually extracted features as input. Among them, ResNet that is a deep learning model proved to be the best method to identify hand cream used in the test. According to our search in the scientific reported papers, this is the first attempt for predicting test cosmetic product with only raw time-series friction data without any manual feature extraction. Automatic product identification capability without manually extracted features can be used to narrow down the list of the newly developed candidate products.

To develop the classification method of Agricultural by-productions for biogas production

  • Kim, Minjee;Kim, Sanghun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.7 no.2
    • /
    • pp.155-160
    • /
    • 2015
  • The objective of this study was to develop the classification method of various organic wastes. Specifically, the effects of proximate composition on the biogas production and degradation rates of agricultural by-production was investigated and a new standards for mixture of various organic wastes based on proximate composition combination was developed. Agricultural by-products (ABPs) with medium total carbohydrate, medium crude protein and low fat contents demonstrated the single step digestion process. ABPs with low total carbohydrate, high crude protein and high fat contents demonstrated the two step digestion process of Diauxic growth. The single ABP (Class No. 15) and the mixed ABPs (Class No. 12+18, 6+12+22, 9+12+18) after 10days showed the similar biogas yield pattern. We can use the classification method for the more ABPs and organic wastes from factory and municipal waste treatment plant for the high efficient biogas production.

Multi-modal Representation Learning for Classification of Imported Goods (수입물품의 품목 분류를 위한 멀티모달 표현 학습)

  • Apgil Lee;Keunho Choi;Gunwoo Kim
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.1
    • /
    • pp.203-214
    • /
    • 2023
  • The Korea Customs Service is efficiently handling business with an electronic customs system that can effectively handle one-stop business. This is the case and a more effective method is needed. Import and export require HS Code (Harmonized System Code) for classification and tax rate application for all goods, and item classification that classifies the HS Code is a highly difficult task that requires specialized knowledge and experience and is an important part of customs clearance procedures. Therefore, this study uses various types of data information such as product name, product description, and product image in the item classification request form to learn and develop a deep learning model to reflect information well based on Multimodal representation learning. It is expected to reduce the burden of customs duties by classifying and recommending HS Codes and help with customs procedures by promptly classifying items.

A Study on the Application of DFMEA for Safety Design of Weapon System (무기체계의 안전 설계를 위한 DFMEA 적용에 관한 연구)

  • Seo, Yang Woo;Oh, Young Il;Kim, Hee Wook;Kim, So Jung
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.18 no.1
    • /
    • pp.46-57
    • /
    • 2022
  • In this paper, we proposed the DFMEA Implementation Method for safety design of Weapon System. First, we presented the process for DFMEA. And then, the case analysis of OOO missile was performed in accordance with the process presented. After defining the system requirements of OOO missile, failure definition scoring criteria was set. In order to clarify the definition of failure, the failure was classified into safety, reliability, maintainability and others. After performing the function analysis, the relationship matrix analysis was performed to identify the failure mode according to the function without omission. After clarifying the failure classification, mode of failure, cause of failure and effect were analyzed to calculate the severity, occurrence and detection values. After the action priority was judged, the recommended action according to the failure classification was identified for the determined action priority. The results of this study can be used as a relevant basis for the design reflection and resource re-allocation of stakeholders.

SMD Detection and Classification Using YOLO Network Based on Robust Data Preprocessing and Augmentation Techniques

  • NDAYISHIMIYE, Fabrice;Lee, Joon Jae
    • Journal of Multimedia Information System
    • /
    • v.8 no.4
    • /
    • pp.211-220
    • /
    • 2021
  • The process of inspecting SMDs on the PCB boards improves the product quality, performance and reduces frequent issues in this field. However, undesirable scenarios such as assembly failure and device breakdown can occur sometime during the assembly process and result in costly losses and time-consuming. The detection of these components with a model based on deep learning may be effective to reduce some errors during the inspection in the manufacturing process. In this paper, YOLO models were used due to their high speed and good accuracy in classification and target detection. A SMD detection and classification method using YOLO networks based on robust data preprocessing and augmentation techniques to deal with various types of variation such as illumination and geometric changes is proposed. For 9 different components of data provided from a PCB manufacturer company, the experiment results show that YOLOv4 is better with fast detection and classification than YOLOv3.

Extraordinary State Classification of Grinding Wheel Surface Based on Gray-level Run Lengths (명암도 작용 길이에 따른 연삭 숫돌면의 이상 현상 분류)

  • 유은이;김광래
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.3
    • /
    • pp.24-29
    • /
    • 2004
  • The grinding process plays a key role which decides the quality of a product finally. But the grinding process is very irregular, so it is very difficult to analyse the process accurately. Therefore it is very important in the aspect of precision and automation to reduce the idle time and to decide the proper dressing time by watching. In this study, we choose the method which can be observed directly by using of computer vision and then apply pattern classification technique to the method of measuring the wheel surface. Pattern classification technique is proper to analyse complicated surface image. We observe the change of the wheel surface by using of the gray level run lengths which are representative in this technique.

Extraordinary State Discrimination of Grinding Wheel Surface Using Pattern Classification (패턴 분류법을 이용한 연삭 숫돌면의 이상상태 판별)

  • 유은이
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.447-452
    • /
    • 2000
  • The grinding plays a key role which decide the quality of a product finally. But the grinding process is very irregular, so it is very difficult to analyse the process accurately. Therefore it is very important in the aspect of precision and automation to reduce the idle time and to decide the proper dressing time by visualizing. In this study, we choose the direct method of observation by making use of computer vision, and apply pattern classification technique to the method of measuring the wheel surface. Pattern classification technique is proper to analyse complex surface image. We observe the change of the wheel surface by making use of the gray level run lengths which are representative prince in this technique.

  • PDF

An E-Mail Recommendation System using Semi-Automatic Method (반자동 방식을 이용한 이메일 추천 시스템)

  • Jeong, Ok-Ran;Jo, Dong-Seop
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.604-607
    • /
    • 2003
  • Most recommendation systems recommend the products or other information satisfying preferences of users on the basis of the users' previous profile information and other information related to product searches and purchase of users visiting web sites. This study aims to apply these application categories to e-mail more necessary to users. The E-Mail System has the strong personality so that there will be some problems even if e-mails are automatically classified by category through the learning on the basis of the personal rules. In consideration with this aspect, we need the semi-automatic system enabling both automatic classification and recommendation method to enhance the satisfaction of users. Accordingly, this paper uses two approaches as the solution against the misclassification that the users consider as the accuracy of classification itself using the dynamic threshold in Bayesian Learning Algorithm and the second one is the methodological approach using the recommendation agent enabling the users to make the final decision.

  • PDF

A Product Risk Assessment based on Scenario for Safety Management (제품안전관리를 위한 시나리오 기반의 리스크 평가기법 연구)

  • Suh, Jungdae
    • Journal of Digital Convergence
    • /
    • v.12 no.8
    • /
    • pp.101-112
    • /
    • 2014
  • In this study, a risk assessment method based on scenario for the product safety management in Korea has been developed and proposed. To this end, Korea's related regulations for product safety management should be analyzed first, and the risk assessment method necessary for the enforcement of the regulations is presented by itemizing the method into the case of general injury and toxic substances. The features of the method presented in this study are as follows: (i) It is a method based on the injury scenario which can occur during the use of product. (ii) It assesses a risk based on the probability of the scenario and the severity of injury. (iii) In the case of toxic substances, it assesses a risk considering the hazard of the toxic substances on the human body and the severity of injury. To determine the probability of the injury scenario, this study has decomposed the scenario into several configuration factors and estimates each factor's probability to calculate the whole scenario's probability. The results of risk assessment through the method of this study are presented and it is shown that the method can be applied to the product classification for the product safety management.