As growing the electronic commerce there are significant changes in the products/services catalog into the on-line environment. Advertent of e-catalog business opportunity for their own product/services enlarges the market volume and there are diverse methods for the presentation of its product/services. A method for the presentation of product/services features one uses identification and classification system. This study constructs a classification system and database layout for the product/services classification system as a part of e-catalog system. We consider the specific method for the GDAS-based dataset and UNSPSC classification system in the distribution industry.
This study examines the influence of product classification standards and structure on user perception as well as their attitude towards online shopping sites. The causal relationships of variables are also examined. The analysis was based on an online survey with 247 responses. Four types of internet shopping sites were developed and used as a stimulus. The results of the mean comparison analysis indicated that perceived variety, information overload, perceived shopping value and attitude towards the site varies significantly with product classification standards and structure. There was also of a marginally significant interaction between the classification standard and structure on perceived variety and information overload. The causal relationship analysis revealed that perceived variety positively influenced hedonic and utilitarian shopping value. However, information overload had a negative effect on hedonic and utilitarian shopping value. Both the hedonic and utilitarian shopping value positively influenced attitudes towards the sites. This study demonstrates that classification method influences customer perception and attitude. It offers interesting insights on a product classification method as a strategic tool for online shopping.
A study was conducted to develop a better classification method of Consumer Attributes that can enhance user-centered product design process. A modified QFD(Quality Function Deployment) survey form based upon Fuzzy set theory was proposed which contains 9 steps of importance level, and Certainty and Necessity function to improve the reliability of extracted consumer attributes. To verify the betterment and advantage of proposed classification method, a series of questionnaire survey was performed. Thirty male and 30 female university students were participated in the survey using a VCR as a target product. The result of the study showed that 80% of subjects were preferred the proposed classification over existing method. A cluster analysis was performed to further verify the betterment of the proposed method. The result also supported that the proposed classification method is more reliable and enhanced method in extracting consumer attributes and can be applied in the product design.
Among the themes for CSR(Corporate Social Responsibility), consumer issues include protecting the health and safety of consumers who purchase and use the products. In particular, ensuring product safety is a major theme of consumer issues for corporate social responsibility. Currently, the government implements the Electrical Appliances and Consumer Products Safety Control Act for product safety management and selects products that may harmful to consumers as safety control items, and manages the products by designating them as 4 types of safety certification, safety confirmation, supplier conformity verification, and safety standard compliance. In this paper, we propose management plans for the establishment of a more reasonable classification type of safety management target for 48 items of consumer products to be controlled by the act, and confirm the validity of the plan. First, we perform cluster analysis using data for CISS (Consumer Injury Surveillance System) to derive a new classification type of the safety management target. Next, we compare the results of the cluster analysis with the classification type of the act and the existing scenario classification method RAS (Risk Assessment by Scenario) and the causal network method RAMP (Risk Assessment Method based on Probability). Based on these results, we propose two new plans of safety management target classification and verify its validity.
e비즈니스가 활발히 이루어지면서 소비자들은 온라인 쇼핑몰올 통해 수많은 상품을 접할 수 있게 되었고, 상품구매 시 다른 사람들의 리뷰를 참고하게 되었다. 하지만, 리뷰의 수도 많아짐에 따라 소비자가 모든 리뷰들을 살펴보기가 힘들다는 문제점이 대두되었으며 이를 해결하기 위해서 리뷰의 상품에 대한 평가를 요약하고 성향을 파악하는 오피니언 마이닝 연구가 나타나게 되었다. 본 논문에서는 상품리뷰를 대상으로 오피니언 마이닝을 수행하는 경우 어휘의 의견 성향을 파악할 때, 문맥정보를 활용하여 기존의 의견분류방법 보다 좀 더 정확한 의견 판단이 가능한 방법에 대해 다루고 있다. 이를 위해, 어휘가 사용될 때의 문맥정보를 정의하고 이를 의견분류에 적용하는 방법을 제안하였으며, 실험을 통하여 기존 연구 보다 상황별 알맞은 의견분류가 가능함을 보였다. 또한 수작업으로 말뭉치의 핵심 어휘들을 정의했던 기존 연구들에서의 방식에서 벗어나, 리뷰본문과 리뷰점수를 활용하여 자동으로 상황에 맞는 말뭉치를 구축하는 방법도 제안하였다. 이를 통해 상품리뷰에 나타난 어휘들의 문맥에 맞는 의미 성향을 정확하고 쉽게 판별해 낼 수 있게 되었다.
본 논문에서는 퍼지규칙 기반 시스템에서 규칙 내에 포함된 불완전한 속성을 제거하여 보다 간략화 된 규칙으로도 분류할 수 있는 방법을 제안하였다. 제안한 방법에서는 규칙 내에 포함된 불완전한 속성을 제거하기 위해 러프집합을 이용하였고 보다 명확한 분류를 위해 출력부 소속함수의 적합도가 최대인 속성들을 추출하였다. 또한 모의실험에서는 제안된 방법의 타당성을 검증하기 위해 rice taste data를 기반으로 규칙 감축 전 퍼지 max-product 결과와 규칙 감축 후 퍼지 max-product 결과를 비교하였다. 그 결과, 규칙 감축 전 max-product 결과와 규칙 감축 후 max-product 결과가 정확히 일치함을 볼 수 있었고, 보다 객관적인 검증을 위해 비퍼지화 된 실수 구간을 비교하였다.
Currently, the government selects products that are likely to cause harm to consumers as safety management targets and classifies them into three types: safety certification, safety confirmation, and supplier conformity verification. In addition, the government conducts safety surveys on products in circulation or accident products, and recalls products that are of great concern to consumer risks. In this paper, we have developed RAP (Risk Assessment method based on Probability), which is a probability based product risk assessment method, for the classification of safety management type of product and safety investigation, and have shown an application example. In this process, information is used for the CISS (Consumer Injury Surveillance System) of the Korean Consumer Agency. In addition, we apply the cluster analysis to classify the current supervised children products into three groups. Then, we confirm the effectiveness of RAP by comparing the result of RAP application, cluster analysis result and current safety management classification type. Also, we recognize the need to review the current safety management classification criteria for classifying products into three types.
In an online shopping site or offline store, products purchased by each customer over time form the purchase history of the customer. Also, in most retailers, products have a product taxonomy, which represents a hierarchical classification of products. Considering the product taxonomy, the lower the level of the category to which two products both belong, the more similar the two products. However, there has been little work on similarity measures for sequences considering a hierarchical classification of elements. In this paper, we propose new similarity measures for purchase histories considering not only the purchase order of products but also the hierarchical classification of products. Unlike the existing methods, where the similarity between two elements in sequences is only 0 or 1 depending on whether two elements are the same or not, the proposed method can assign any real number between 0 and 1 considering the hierarchical classification of elements. We apply this idea to extend three existing representative similarity measures for sequences. We also propose an efficient computation method for the proposed similarity measures. Through various experiments, we show that the proposed method can measure the similarity between purchase histories very effectively and efficiently.
온라인상에서 거래되는 상품들을 분류하고 관리하기 위해서는 많은 시간과 비용을 들여 상품분류체계를 유지하여야 한다. 일반적으로 상품을 다루는 모든 분야에서 분류체계는 분류전문가에 의하여 수동으로 관리되고 있으며 이는 경제적인 측면, 시간적인 측면에서 많은 낭비를 초래하게 된다. 현대사회에서는 산업의 급속한 발전으로 상품의 다양화 융합화 등이 활발하게 이루어져 상품을 효율적으로 관리하기 위한 분류체계의 필요성은 더더욱 증가하고 있다. 따라서 상품분류체계를 자동화 하고자 하는 연구들이 많이 진행되어 왔으며 이런 연구의 일환으로 본 논문에서는 분류체계를 자동으로 생성하는 방안을 제안한다. 각각의 상품은 속성의 집합이다 라는 관점에서 출발하여 각 상품, 즉 속성집합 간 존재하는 포함관계를 활용하여 계층 트리구조의 분류체계를 자동으로 생성하는 알고리즘을 제시하고 구현하였으며, 실험을 통하여 제안한 알고리즘의 실효성을 입증하였다.
A designer is mainly supported by two essential factors in design decisions. These two factors are intelligence and experience aiding the designer by predicting the interconnection between the required design parameters. Through classification of product data and similarity recognition between new and existing designs, it is partially possible to replace the required experience for an inexperienced designer. Given this context, the current paper addresses a framework for recognition and flexible retrieval of similar models in product design. The idea is to establish an infrastructure for transferring design as well as the required PLM (Product Lifecycle Management) know-how to the design phase of product development in order to reduce the design time. Furthermore, such a method can be applied as a brainstorming method for a new and creative product development as well. The proposed framework has been tested and benchmarked while showing promising results.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.