
H O S T E D B Y Available online at www.sciencedirect.com

Journal of Computational Design and Engineering 3 (2016) 274–285

A framework for similarity recognition of CAD models

Leila Zehtabann, Omar Elazhary, Dieter Roller

University of Stuttgart, Universitätsstr. 38, 70569 Stuttgart, Germany

Received 18 November 2015; received in revised form 12 April 2016; accepted 14 April 2016
Available online 19 April 2016

Abstract

A designer is mainly supported by two essential factors in design decisions. These two factors are intelligence and experience aiding the
designer by predicting the interconnection between the required design parameters. Through classification of product data and similarity
recognition between new and existing designs, it is partially possible to replace the required experience for an inexperienced designer. Given this
context, the current paper addresses a framework for recognition and flexible retrieval of similar models in product design. The idea is to establish
an infrastructure for transferring design as well as the required PLM (Product Lifecycle Management) know-how to the design phase of product
development in order to reduce the design time. Furthermore, such a method can be applied as a brainstorming method for a new and creative
product development as well. The proposed framework has been tested and benchmarked while showing promising results.
& 2016 Society of CAD/CAM Engineers. Publishing Services by Elsevier. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Design classification; Opitz coding system; Similarity retrieval

1. Introduction

Market competition and constantly changing customer
demands yield to massive production. Consequently a huge
amount of information is produced and archived every day.
Reusing such information can reduce the product cost and
time; along with optimizing the product design. There is no
doubt that the dimension of reusing such know-how greatly
affects the designing of new products in the conceptual design
phase. Different information could be derived and learnt from
the already existing design including geometry, material,
process planning, manufacturing, price and generally Product
Lifecycle Management (PLM) information. It is possible to
become skilled at PLM knowledge by knowing the similar
cases, therefore making better design decisions. In this regard,
an efficient similarity recognition algorithm is a fundamental

prerequisite which assists in providing an automated and
intelligent decision making.
Alongside all research developed by engineers on decision

making and Decision Support Systems (DSS) [1–3] and
models [4], psychologists suggest four essential techniques
for improving the problem of decision making and choice
overload [5–7] listed in following:

(1) Cut: get rid of the extraneous alternatives
(2) Concretize: Make it real
(3) Categorize: more categorization, fewer choice
(4) Condition: for complexity, it is easier to make complex

decisions by gradually increasing the complexity

The above mentioned techniques have been considered in
the current research aiming for modeling a knowledge-based
framework. Such a structure guides the designer to an
optimized decision making with respect to reuse of the existing
similar artifacts data, Fig. 1.
A CAM-based classification system was applied and devel-

oped further intended for automatic extraction of the design
information from STEP file. In addition, an infrastructure was
designed and developed for a comprehensive retrieval, i.e.

www.elsevier.com/locate/jcde

http://dx.doi.org/10.1016/j.jcde.2016.04.002
2288-4300/& 2016 Society of CAD/CAM Engineers. Publishing Services by Elsevier. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

nCorresponding author. Tel.: þ49 711 685 88 327; fax: þ49 711 685 88 320.
E-mail addresses: zehtaban@informatik.uni-stuttgart.de (L. Zehtaban),

omazhary@gmail.com (O. Elazhary),
roller@informatik.uni-stuttgart.de (D. Roller).
Peer review under responsibility of Society of CAD/CAM Engineers.

www.sciencedirect.com/science/journal/22884300
http://dx.doi.org/10.1016/j.jcde.2016.04.002
www.elsevier.com/locate/jcde
http://dx.doi.org/10.1016/j.jcde.2016.04.002
http://dx.doi.org/10.1016/j.jcde.2016.04.002
http://dx.doi.org/10.1016/j.jcde.2016.04.002
mailto:zehtaban@informatik.uni-stuttgart.de
mailto:omazhary@gmail.com
mailto:roller@informatik.uni-stuttgart.de

selective similarity recognition and part retrieval. The follow-
ing paragraphs explain these phases briefly.

� Comprehensive similarity recognition algorithm: A com-
prehensive similarity recognition algorithm has been devel-
oped to calculate distance function. A distance function is
applied to measure the similarity and accordingly to discard
the dissimilar cases and retrieve only the similar models.
The percentage of total similarity can be tuned by the
designer.

� 3D CAD presentation of the retrieved models: To make the
retrieved similar models more tangible, all the related 3D
CAD models are also represented to the user in addition to
STEP files and the classification codes (Opitz codes).

� Opitz coding system: For categorization and classification,
Opitz coding system as a successful method of group
technology (GT) in manufacturing has been applied.

� Adjustable similarity recognition for each digit: The
similarity setting for each digit can vary from 0 to 100
percent. 0 indicates dissimilar features and 100 for identical
models and the required weight for each digit step-by-step
can be adjusted between these two numbers by the user.

Opitz coding system is a method of group technology which
is applied in Computer Aided Manufacturing (CAM) for part
classification. It is a well-known method for classification of
manufacturing features and is named after Herwart Opitz who
originally proposed this coding system [8]. Opitz coding system

consists of alphanumerical digits, each presenting a feature and
its type. In the other words, a digit is the aggregation of all the
feature conditions it is composed of according to the code's
definition. Created by Herwert Opitz in 1970, Opitz code is a
hybrid code consisting of a maximum of 14 digits. The code
itself is divided into 3 sections. The first section consists of five
digits which are dubbed the “form code” and describe the
geometry and topology of the product/part. The second section,
also called the “supplementary code” was added later and
consists again of four digits that represent the dimensions,
material, original shape of raw stock, and accuracy of the
product/part. Each digit in these two sections may contain 10
different values ranging from 0 to 9. The third section consists
of only four characters; A, B, C, and D. It is called the
“secondary code” and allows for organization customization of
the code. Here, organizations can include proprietary and
organization-specific information regarding the product/part.
The Opitz code's structure is given below in Fig. 2.
The first five digits of the code are referred to manufacturing

features and highlight the manufacturing features such as bore,
step, forming, etc. and their specifications. As an instance if the
discussed manufacturing feature is bore, blind bore, through
bore, number of the bore/s, position/s and main/axial bore are
specifically pointed and highlighted in the code.
The number of digits or the size of Opitz code is fixed for all

parts and it is independent of complexity of a part. The current
research incorporates feature recognition and the translation of
such features into a model's group comparison functions code,

CUT Comprehensive similarity recognition algorithm

CONCRETIZE 3D CAD presentation of the retrieved models

CATEGORIZE Classification using Opitz coding system

CONDITION Adjustable similarity recognition for each digit

Fig. 1. Comparable techniques of better decision making and the developed system.

Fig. 2. The Opitz code's main structure [8,9].

L. Zehtaban et al. / Journal of Computational Design and Engineering 3 (2016) 274–285 275

explained in Section 3. The group technology code will then be
used to retrieve identical or similar models from a benchmark
discussed in Section 4. After constructing such an application, it
will be evaluated by some of the most common evaluation
techniques. For example, the feature recognition functionality
will be evaluated with regard to the accuracy of the produced
code and the similarity-retrieval functionality will be evaluated
using one of the most famous query evaluation techniques; the
precision–recall technique discussed in Section 5.

The objective of this paper is to describe a framework for
feature recognition and similarity retrieval of a CAD model.
The modules of the framework will be discussed in detail. In
addition, the test and benchmark results of shape representa-
tion and similarity retrieval of the proposed method will be
discussed and compared with other well-known similar
methods.

2. Related works

Shape signature is a replacement for 3D geometry as a
transferable and understandable model of 3D geometry for the
shapes digital comparison. A shape signature is supposed to
contain all shape features and characteristics [10,11]. There are
different approaches to convert a shape into its signatures such
as statistical methods, graph-based methods, group technology
(GT), etc., as Fig. 3 presents. Among these methods which
convert a shape into different types of presentation such as
graph or statistics, group technology is an alphanumerical code
which contains more information than the geometry. One of
the advantages of applying such a signature is the potential of
code extension for a comprehensive product signature. Such a
comprehensive product signature can be later used as standard
format for exchanging product data with design intent and in
downstream applications. Until recently, the exchange of
product data has been limited to transferring geometry which
has been led to standard format for CAD data including ISO
10303 (STEP). The exchange of CAD models between
different CAD systems has led the research to develop
standard CAD data format such as STEP. However, such
standardizations are mostly limited to geometry and there is a
lack of standardization for product data. Typical GT coding
systems comprises of Opitz coding system (13 digits),
MICLASS (12 digits), KK3 system (21 digits) and DCLASS
(8 digits) [12,13]. Between different methods of part classifi-
cation systems in GT, Opitz coding system [8] is one of the

most well-known and widely applied approaches. Group
technology codes and classification methods are all based on
manufacturing classification of part families.
In the approach done by Henderson and Musti [14], Prolog

rules are used to determine the DCLASS code of a part/
product. An application, called CODER, was constructed to
perform this operation. It consists of three modules; a solid
model converter, a geometry interpreter, and a part coder. The
solid model converter prepares the given CAD file for
processing (i.e. preprocessing) and then passes it along to the
geometry interpreter. A significant part of preprocessing
consists of transforming the model into predicates that are
interpretable by Prolog. The geometry interpreter then takes
over and uses this predicate calculus representation of the
model to find and identify all mid- and low-level features that
exist within the model. These may consist of axis sets,
protrusions, depressions, and edge types. All the feature
information is then stored into a “description list”. Finally,
the part coder uses the description lists in order to generate the
DCLASS code. With regard to the employment of the
DCLASS code vs. the Opitz code, it is found that the Opitz
code provides much more detail. By simply comparing the
length of the codes, where the DCLASS has 8 digits as
opposed to a 9-digit Opitz code with 4 additional customizable
digits, it is calculated that the DCLASS can have about
676000000 possible enumerations, as opposed to the
4.56976� 1014 possible enumerations given by the Opitz
code. In this research, the more details are available, the better
the similarity-retrieval functionality will work. In addition, the
DCLASS code does not place enough emphasis on form
features, which are only assigned one digit. The Opitz code
allocates four digits to the description of form features, which
is crucial in filtering search results.
Kyprianou proposed and defined a so-called feature gram-

mar describing all possible shape features similar to phrase-
structure of Chomsky grammar. It consists of four finite sets
for structural primitives, terminal primitives, production rules
and initial primitives/starting points [15]. Different approaches
for shape grammar and automatic feature recognition of a
shape using boundary representation was continued with Braid
(1979), Stroud (1980) and later by Cary (1980) [16]. All these
approaches are used for downstream application programs
such as finite element mesh generation and process planning.
Another popular method is that presented by Liao and Lee

[17] as well as Kaparthi and Suresh [18] which uses artificial

Graph Numerical
Code/ Matrix

Image
2D / 3D Feature Function Text

Shape Signature Configuration

Fig. 3. Various types of shape signature representation.

L. Zehtaban et al. / Journal of Computational Design and Engineering 3 (2016) 274–285276

neural networks (ANNs) to classify part models into groups
based on common features. For the purpose of the approach,
the authors created their own group technology code which
would be used to classify different parts. The network is first
initialized and a new pattern (the new model's features) is input
into it. Then, the model is compared to the various existing
groups in the system, and is assigned to the most similar one in
terms of features.

Artificial neural networks are flexible when it comes to
classifying models and provide good results for feature
recognition. However, they rely on the existence of a large
set of training data. The training data are used to teach the
ANN how to classify and assign part models to different
groups. The drawback of using a machine-learning method in
the context of this project is the large number of models that
have to be available in order to perform both the training and
testing activities. In addition, the approach proposed by Liao
and Lee [17] only considers geometrical and topological
features. It does not take into account material or accuracy.
The use of ANNs also limits the possibilities for expansions.
For example, if it were decided that additional information
would be needed to describe a model, the ANN would have to
be discarded, re-designed and rebuilt, then it would have to be
re-trained and re-tested. On the other hand, the Opitz code can
simply be expanded by adding several more digits. And given
the encapsulation of the functions constructed, only minor
changes will be made in order to incorporate the new criteria.

Another method to obtain model signatures is slicing. The
signature consists basically of several sections (cross-sections
or longitudinal sections). The sections are then used to produce
a rudimentary set of measures which can be used as a shape
signature. While this approach reduces the effort required to
acquire model information, it does not provide enough
information regarding relevant features. Especially those
pertaining to manufacturing, for example material. Due to
the sampling that occurs within this approach, it is very likely
that an indentation or a curvature be overlooked, and thus the
relevant model is ignored in the retrieval process. However,
this method does have advantages; mainly the simplicity of the
distance function, as opposed to the cosine similarity and its
implementation, as well as the entire feature recognition
module. The proposed approach by Jiantao et al. [19] uses
2D slice similarity measurements to establish a model signa-
ture, and then compares them using a very basic distance
function. Wei et al. [20] proposed a retrieval method to
develop the CAD model retrieval system which can be also
applied in the partial structure retrieval of CAD model.
However this method applies a boundary matching.

In the research form Li et al. [21] a reuse-oriented retrieval
method to bridge the gap between CAD model retrieval and reuse
however by using a graph-based representation for capturing
modeling knowledge embedded in CAD models. The proposed
retrieval method by Bai et al. [22] can retrieve reusable subparts
queries and support design reuse. However, the method suffers
from several issues such as dependency on the design representa-
tion and the computational efficiency problem. Another example of
graph signature for components has been proposed by Marefat and

Pitta [23] which captures the spatial relationships between features
by feature interaction graphs as signature.
One of the approaches for graph-based shape signature is

proposed by El-Mehalawi and Miller [24,25] to create a
topological graph from a STEP, where the nodes correspond
to surfaces and the edges correspond to the connecting edge
curves between surfaces. Each node may have multiple
properties. Another example of the graph-based shape signa-
ture has been applied by Ansaldi et al. [26] for building a
relational graph structure based on a B-Rep has introduced the
dual graph of the object and feature recognition using Face
Adjacency Graph (FAG). However, these approaches limit
themselves only to geometrical properties. This makes it very
hard to establish any manufacturing properties or features. The
largest sub-graph between models is searched for and is
considered indicative of the similarity between two models
(i.e. they share the most common topological and geometrical
features). As with previous approaches, this approach is
computationally expensive. This is true especially for larger
models which consist of a large number of surfaces and
connections. This is avoided in the proposed application by
simply comparing the Opitz code vectors.

3. Proposed framework: similarity recognition of CAD
models

The proposed system architecture is depicted in Fig. 4. The
application consists of five basic modules, each of which
interacts with other specific modules. There are also two
storage modules, the CAD model index (which is internal to
the system), and the CAD model repository (which is external
to the system). The five basic modules include a GUI module,
a feature recognition module, a similarity-retrieval module, a
CAD model reader module, and a repository interface module.
The CAD model reader module is responsible for reading

CAD model files, and translating them into a set of objects that
the application can deal with. This set of objects is later passed
to the feature recognition module.
The feature recognition module then uses these objects to

identify and recognize features relevant to the required model
signature. The resulting signature is then visible through the
application's GUI. The resulting signature can also be used as
an input to the similarity retrieval module. The similarity-
retrieval module will compare the given signature to the
internal CAD model Index, all the while exposing the query
parameters to the user via the GUI. Once the parameters are
set, the user can initiate the search function and a list of models
to which the requested parameters apply will be retrieved from
the CAD model index. The repository interface module is used
to update the CAD model index so that it conforms to the latest
version of the CAD model repository. The separation of
storage media (local and external) was chosen since it provides
greater portability, flexibility regarding different types of
repositories, and more efficiency when it comes to query
execution. The feature recognition applies a rule-based system
(RBS) as a method of automatic feature recognition (AFR).
The feature library was constructed according to an Opitz

L. Zehtaban et al. / Journal of Computational Design and Engineering 3 (2016) 274–285 277

coding system and consequently Opitz features to fulfill the
requirements of RBS. The feature recognition module includes
two distinct sections, positional rules and structural rules.
These two phases are required to drive Opitz features from a
CAD file with STEP format as a neutral CAD file format.

This approach is quite similar to the process employed by
most graph-based methods. However, the primary difference
here is that the end result of the recognition process is not a
graph, rather an object that consists only of the required
interconnected components that are needed to perform the
classification process. Consequently it falls under the two
categories of graph-based and heuristics-based approaches.
Since the STEP file is constructed in a graph-like fashion, it
results in graph-like structured object. This object is then
analyzed via predefined rules in order to infer shape and
machining features.

The process of generating Opitz code is rule-based in nature.
Heuristics are drawn from the Opitz code specification [8], and
are converted into predicates. These predicates are then
implemented as functional checks within the program's code
and are triggered when their conditions are met. For example,
the fifth digit of the Opitz code depends largely on whether the
part model has teeth (if it is rotational). This is transformed
into the following predicate: IF has_teeth THEN
fifth_digito6.

As an example, in Fig. 5 the shape consists of a cylinder,
and two circles forming the top and bottom of the part
respectively. The parsing process begins as follows: first, the

bottom circle that is parallel to the Y-plane is identified, and
used as a reference for the rest of the part's components.
Shapes that are connected to the bottom circle are then
explored, and their machining (if any) is examined. The
process repeats in an iterative manner until there are no more
unexplored components. The methodology of these applied
methods as a solution for this project has been discussed in
detail in Zehtaban and Roller [27].
The predicate is then functionally implemented as a function

that analyzes the object mentioned before, and checks for the
existence of teeth. The CAD model repository is assumed to be
any database on a remote system that contains information
about models. The application should be able to interface with
it in order to retrieve model data. The retrieved model data
would then be used to populate the CAD model index within
the application so that the user would always have a local copy
which would be accessible at all times. It is also assumed that
the basic structure of this database would be as simple as
possible. This structure is viewed in the ERD (Entity Relation-
ship Diagram) in Fig. 6.

GUI Module

Application

Feature Recognition
Module

Positional Rules

Structural Rules

Similarity Retrieval
Module

Set and Comparison
Module

Distance Function

CAD Model Reader
Module

Repository Interface
Module

CAD Model
Index

CAD Model Repository

Fig. 4. Application architecture diagram.

Fig. 5. Pin example.

CAD Model

Name

Identifier Description

Signature

Image

CAD File

Fig. 6. CAD model repository relationship diagram.

L. Zehtaban et al. / Journal of Computational Design and Engineering 3 (2016) 274–285278

From the ERD above in Fig. 6, and the physical description
below, the simplest structure for a CAD model repository is
shown. These are the most basic pieces of information that
need to be saved in order to retain meaningful information
about a model. This information also allows a saved model to
be used in the similarity and retrieval functions as a possible
search result. The table “CAD Model” consists of six fields in
total. The “Identifier” field is a unique surrogate key assigned
to each model in order to distinguish it from other existing
models. The “Name”, “Description”, “CAD File”, and “Image”
fields store the model's name, a short description, the path to its
CAD file, and the path to its image file respectively. The
“Signature” field is used to store the model's features that have
been identified upon insertion. While it may be possible that
the remote system contain more fields, these fields are
considered mandatory for the application to function. The
physical design is given as follows: CAD_MODEL (IDENTI-
FIER, NAME, DESCRIPTION, FILE_PATH, IMG_PATH,
SIGNATURE).

4. The similarity retrieval module

The similarity retrieval module includes a distance function.
A distance function defines a distance/similarity between each
pair of components of a group [28]. If a group consists of
shape signatures in the design concept, the distance function
would be the unique distance between two shape signatures.
Since there are different types of shape signature, Fig. 3, thus
the distance function should be properly selected to fit the
signature type.

Shape signature applied in this project is based on the
features obtained by using the Opitz coding system. Features
are presented in an alphanumerical string form. To compute
the distance function between two Opitz codes, the cosine
coefficient (similarity) method has been applied; see Eq. (1)
based on Cha [29]. The cosine coefficient (SCos) computes the
cosine of the angle between two vectors (P and Q). The
nominator is the scalar product between the two vectors in
question, while the denominator is the product of the norms of
the two vectors. Deviating forms the previously introduced
functions, this function results in a real number X between �1

and 1 (�1rXr1). The closer the value is to 1 or �1, the
more similar the vectors are, and a value moving closer to
0 indicates a growing dissimilarity between both vectors.

SCos ¼
Pd

i ¼ 1 PiQiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPd
i ¼ 1 P

2
i

q ffiffiffiffiffiffi
Q2

i

q ð1Þ

One of the advantages of using the Opitz coding system is
its numerical structure. Thus, it is possible to apply one of the
distance functions in order to calculate similarity between code
vectors. This implicitly means the Opitz code generated by the
previous module would be used as a part signature. The cosine
similarity is used mainly due to the fact that it always provides
a number between �1 and 1. And it can be adjusted to give a
number between 0 and 1 indicating a degree of similarity. This
is because each number and its additive inverse have the same
magnitude, but move in opposite directions. In this context,
measuring the direction of the code vectors is not important,
their magnitude is. Therefore, the negative solution space of
the cosine similarity function can be omitted. By slightly
modifying the output of the function, it can yield values
between 0% and 100% indicating a level of similarity between
two code vectors. This makes it much more user-friendly.
Another benefit that stems from using cosine similarity is

that a weight vector may be used in order to emphasize or
stress certain digits of the code vector, indicating their
importance. This “weight vector” would be multiplied by each
code vector, and then they would be submitted to the cosine
similarity function, which will then output a similarity value in
accordance with the applied weights, Fig. 7.
However, it is not possible to apply the distance function

directly to any code vectors. Due to the hierarchical structure
of geometrical part of the Opitz code (form code), comparison
rules have to be defined. To clarify, an Opitz code with a first
digit of 1 cannot be compared with a code that has 8 for a first
digit. The reason behind this is that, with the interpretation of
the Opitz code taken into account, the following four digits do
not mean the same things. For example, when the first digit is
1, the third digit describes the internal shape and when the first
digit is 8, the third digit describes principal bores and

Order of a new product with specified functionalities Initiation of basic
design

W1
Parameter 1

W2
Parameter 2

Wn
Parameter n

Comprehensive Similarity Comparison Toolbox
Similarity Comparison Coordinator

Database

Product 1

A% Similarity to parameter 1
B% Similarity to parameter 2
.
F% Similarity to parameter n

Product 2

M% Similarity to parameter 1
N% Similarity to parameter 2
.
R% Similarity to parameter n

Similarity Comparison
Algorithm

Graphical User
Interfaces

….

Fig. 7. The conceptual architecture of the similarity recognition [30].

L. Zehtaban et al. / Journal of Computational Design and Engineering 3 (2016) 274–285 279

rotational surface machining. Hence, the following ranges have
been defined:

� first_digito3,
� first_digito5 AND first_digit42,
� first_digito9 AND first_digit45.

If the first digit of a code falls within one of the previously
described ranges, only codes that fall within the same range
may be compared to it. Fig. 8 depicts the Opitz decision tree
for the fifth digit, when the first digit is less than 9, but greater
than 5 (i.e. non-rotational parts).

4.1. Cosine coefficient accuracy

This section is mainly concerned with the effectiveness of
the proposed similarity evaluation method, and whether it
yields to accurate, comprehensive, and satisfying results. Since
the Opitz code is a classification scheme, its numbers do not
reflect any numerical relationship. Therefore, it is treated as a
string. This makes it a valid target for the application of string
comparison functions. The cosine distance is one example of
the distance functions used to compare values (not necessarily
strings). But it is still applicable to strings [31], if they are
converted to their ASCII values and treated as elements of a
vector (or a record). So, the principle is sound. Minimum Edit
Distance [32] method focuses on string comparison too;
however, it was found to be computationally expensive there-
fore abandoned. Plus, using a numerical distance function

allows us to exploit the numbers in the Opitz code with the
least computational effort; i.e. no number to string conversion
and vice-versa.
In addition, it is important to consider that Opitz code is

never referred to as a metric. As a matter of fact, in the
evaluation, it is not the code itself that is used; rather, the
number of instances a digit, or a code was classified correctly.
This essentially results in a ratio when the relative frequency is
taken into account.
The measure used to evaluate such a function is the F-score

(Eq. (2)) according to Lu and Callan [33]. The F-score is the
harmonic mean of the precision and recall, given in Eqs.
(3) and (4) respectively. Precision measures the amount of
correctly retrieved results out of all results returned, while
recall measures the amount of correctly retrieved results from
the results relevant to this query.

F-score¼ 2 � precision � recall
precisionþ recall

ð2Þ

Precision¼ jrj
jRj ð3Þ

Recall¼ jrj
jAj ð4Þ

The “r” variable in Eqs. (2) and (3) denotes the set of
correctly retrieved documents. The “R” variable indicates the
set of all retrieved documents, while the “A” variable indicates
the set of all relevant documents. The F-score typically results
in a value between 0 and 1, 0 being the worst precision and
recall, and 1 being the best.

5. Results and evaluation

This section briefly explains the evaluation of the feature
recognition module and the similarity-retrieval module. As
each module has different evaluation methods, after a detailed
description of the evaluation process, the results will be
examined and interpreted.

5.1. Feature recognition module

The evaluation method applied by Wester et al. [34] is used for
this research. Two basic measures were used to evaluate the
performance of the feature recognition approach; accuracy per
feature, and accuracy per entire classification. By applying those
concepts to this approach, accuracy per feature becomes the
accuracy per digit of the Opitz code. The accuracy per entire
classification becomes the accuracy per total Opitz code. Thus, an
aggregation can be introduced; average accuracy per digit of the
Opitz code. The formulas for these measures are shown below,
where APD presents accuracy per digit; ND stands for number of
instances a digit was classified correctly, TT for total number of test,
NC for number of instances the entire code was classified correctly
and APC for accuracy per code.

Average APD¼ ND
TT

ð5Þ

With teeth?

With forming? Holes exist?

Drilling pattern?

Holes exist?Holes exist?

Holes have same
direction?

Holes have same
direction?

9

4321

0

No Yes

No Yes

Yes

No

7

6
5

8No
Yes

No
YesNo

Yes No Yes No

Yes

This case applies
when none other

applies

Fig. 8. Opitz code tree for digit 5 (1sto9).

L. Zehtaban et al. / Journal of Computational Design and Engineering 3 (2016) 274–285280

Average APD¼
P

Accuracy per Digit
Number of Digits

ð6Þ

Average APD¼ NC
T T

ð7Þ

It is worth noting that these measures are highly dependent
on the test set used to evaluate the system.

5.2. Engineering shape benchmark (ESB)

In regards to different shape representations in mechanical
engineering domain for shape based matching and retrieval,
there are limited number of standard dataset for the mechanical
domain to be applied to benchmark various shape representa-
tions. Among the commonly used evaluation methods for
shape benchmarking are Princeton Shape Benchmark (PSB)
[35] and National Design Repository (NDR) belong to Drexel
University [36]. In the current project, one of the most
extensive dataset for shape benchmarking, Engineering Shape
Benchmark (ESB) developed in Purdue University has been
applied based on the advantages discussed by Jayanti et al.
[37] PSB includes 867 models in 3D form in three main so
called super-class comprising Flat-Thin wall components (107
models), Rectangular-cubic prism (281 models) and Solids of
revolution (479 models). Within each super-class, models are
additionally classified into groups of similar shapes. Fig. 9(a)–
(c) presents some examples of models varieties and classifica-
tion in three super-classes of ESB including Flat-Thin Wall
components, Rectangular-Cubic Prism and Solid of Revolution
super-classes.

To evaluate the effectiveness of the algorithm, the conven-
tional precision–recall calculation and plot has been used for
the test results. Fig. 10 presents some retrieval results using
Opitz codes for ESB. Furthermore, Fig. 11 indicates the

efficiency of applying Opitz coding system classification on
ESB database by precision–recall curve. In comparison, the
precision–recall curve has been presented for some of the most
recognized shape representation methods based on [37]. These
distinguished methods include: Light Field Descriptor, 2.5D
Spherical Harmonics, 2D Shape Histogram, 3D Spherical
Harmonics, Convex Hull Histogram, Solid Angle Histogram,
3D Shape Distribution, Surface Area and Volume, Crinkliness
and Compactness, Geometric Ratios, Moment Invariants as
well as Principal Moments. The tests are run with the default
threshold levels, and only take into account the form features
recognized from the model file. This means that the supple-
mentary code (i.e. digits 6–9) are not taken into account. This
is mainly due to the fact that digit 6 represents the dimensions
of the model, which are not hard to interpret. Digits 7 and 8 are
supplied by the user. Finally, digit 9 depends on adjusting the
threshold levels, which were not adjusted. Furthermore, the
correctness of the automatic classified results has been
compared with the manual feature classification.
Taking into account the rigidity of rule-based systems, it is

found that the resulted values are acceptable for considering
the application capable of correct classification with regard to
the Opitz code.
Regarding size and dimension, it has to be mentioned that

the form code (first 5 digits) does not highlight a part's size.
The sixth digit deals with a limited perspective of the part size,
where it only takes into account a single dimension. This
dimension can be either the diameter (if the part is rotational),
or the longest edge (if the part is non-rotational). However, this
limitation can be solved by extending the Opitz code beyond
its original 9 slots, and make use of the additional 4 slots to
provide more descriptive measures. The comparison mechan-
ism is flexible enough to allow the consideration of extra
digits.

Contact switches class from Flat-Thin Wall components super-class

Bearing Blocks class from Rectangular-Cubic Prism super-class

Spoked Wheels class from Solid Of Revolution super-class

Fig. 9. (a)–(c) Examples of ESB super-class clusters.

L. Zehtaban et al. / Journal of Computational Design and Engineering 3 (2016) 274–285 281

5.3. Similarity-retrieval module

All the queries were performed using a similarity threshold
of 60%. The results are as follows:

� Average precision¼0.450
� Average recall¼0.613
� Average F-score¼0.517

The moderate precision indicates that the application was
able to retrieve correct results, albeit not as specifically as one
would prefer. That is highly dependent on the query itself, as
well as the models currently used as a search space. The higher
recall value indicates that among the models retrieved, a high
percentage thereof were actually relevant to the query. Finally,
an F-score of 0.517 indicates a moderate effectiveness of this
approach as a search and retrieval technique.

One of the issues observed with using the Opitz code to
classify objects, is the fact that it does not reflect all of the
information illustrated in the part-model. For example, when
classifying teeth (in the fifth digit), the classification for
triangular teeth is the same as that for elliptical teeth so long
as both are parallel to the rotation axis. They will both have the
same code, but they are different part-models which result in
different parts/products and may eventually be used in
completely different ways. This is, however, not a failing of
the application, rather one of the Opitz code itself, which does
not go into such rigorous detail.
The previous results also illustrate the aforementioned issue

regarding using the Opitz code. Since it is a group technology
code, it inherently groups together models that are not
necessarily 100% similar. Since each enumeration of the code
signifies a “group” of models, it cannot be treated as a unique
identifier, thereby broadening the spectrum of retrieved results.

Queries Retrieval results

Fig. 10. Retrieval results using Opitz classification system.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pr
ec

is
io

n

Recall

Fig. 11. (a) Precision–recall curve for the proposed method. (b) Precision–recall curve for well-known shape representation methods based on [37].

L. Zehtaban et al. / Journal of Computational Design and Engineering 3 (2016) 274–285282

Fig. 12. (a) Resulting CAD model. (b) Advanced settings for weights.

L. Zehtaban et al. / Journal of Computational Design and Engineering 3 (2016) 274–285 283

This is the main reason for the low precision value encountered
during the tests. However, it is compensated by the high recall
value, which indicates that a vast majority of (if not all)
relevant models have been retrieved.

5.4. GUI module

When the Opitz code is known, either generated by the
system through the wizard, or the designer has already set a
design as a basic design, several scenarios were defined to
administrate the functions of the GUI. These scenarios
encompass all model-related operations and depict the user's
interaction with the model repository as well as the search
results. At this point, the search results are considered the same
as a model repository, but filtered. A menu bar should be
available at the top to give the user access to more advanced
features, such as calibrating the weight settings, adjusting the
flexibility levels for the recognition process, and connecting to
a repository. It should also allow access to the local storage
medium, so that the user can browse the existing models and
view their details.

The user has the possibility to set similarity threshold of his
choice in the main window, or predefines weights for the
comparison process which can be set in the “Advanced
Settings” screen, seen in Fig. 12(b).

And here is an excerpt of the log output shown in Fig. 12(a):

**** Start: Rotational gear with quart teeth/21_25_012_0.stp
Rotational shape
More than 3 external cylinders
External shape… Machined
Holes found: 2
Teeth found, holes found.
Rotational: using diameter as 'measure' at a value of
27.496164321899414
**** Done: 341081740
Running similarity comparisons at 50% minimum. Weights set
at: { 1, 1, 1, 1, 1, 1, 1, 1, 1 } Similarity comparisons complete.
1 models found. Countersunk Gear � 92.0
Models retrieved.

Using a STEP file as input is not always an option. For these
cases, a user can apply the recognition wizard. This wizard is
launched from the main screen and proceeds by asking the user
questions regarding the features which will be translated and
converted into an Opitz code.

6. Conclusions

The main objective of this paper is to present a framework
to support similarity and retrieval system that would assist to
search for and retrieve similar models from a given CAD
model. It was also required that the resulting system be
evaluated as well as validated against other existing endeavors
in this area. The system would, in turn, allow inexperienced

designers to relate their textual requirements via wizard or
rough model to existing models and give them something to
start with instead of rebuilding models from scratch (re-
inventing the wheel). It was shown that the approach is sound
when it comes to using an Opitz code as a shape signature. It
was also shown to be consistent method into some of the
popular approaches in that field, and its issues have been
outlined and discussed. It has also been shown that its issues
do not impede its main functionality, whether these are
incorrectly classified models, or the fact that using an Opitz
code as a signature returns many more results than expected.
Rather, these issues can be used to show that the system indeed
does perform as expected, and has room for improvement.
However, due to the limitations of the Opitz code approach,
models that are not completely similar may be considered
similar.
Using this method it is possible to realize partial similarity

retrieval. By giving a larger weight to a certain property, and
relaxing the similarity threshold, the similar models with
regards to the certain property are retrieved. Although the
other properties will also be compared, but the weights will
significantly influence the similarity values.
The work presented in this research is similar in its reliance

on rule-based systems to generate the group technology code,
but different in how it is applied. Instead of using predicates to
generate feature information, the application simply runs
through a decision tree. The first applicable path is selected
and followed to its end in a forward chaining manner. This
reduces the memory utilization usually consumed by storing
predicates and conclusions of such predicates. As seen in the
evaluation section, this process is slightly rigid. This has been
somewhat mediated by the use of thresholds and flexibility
levels. Though the overall code accuracy is not high, the
accuracy per feature as well as the average accuracy per feature
measures are promising.

References

[1] Bucherta T, Neugebauerb S, Schenkerc S, Lindowa K, Starka R. Multi
criteria decision making as a tool for sustainable product development
benefits and obstacles. J. Procedia CIRP 2015;26:70–5.

[2] Kristianto Y, Gunasekaran A, Helo P, Sandhu M. A decision support
system for integrating manufacturing and product design into the
reconfiguration of the supply chain networks. J. Decis. Support Syst.
2012;52(4)790–801.

[3] Liu E, Hsiao SW, Hsiao SW. A decision support system for product
family design. J. Inf. Sci. 2014;281:113–27.

[4] F. Gao, D. Roller, Modelling of feature-based design process, in: Proceedings
of ASME Design Engineering Technical Conferences, 13–16 September,
Atlanta, USA, 1998, 331.

[5] Iyengar SS, Lepper MR. When choice is demotivating: can one desire too
much of a good thing?. J. Personal. Soc. Psychol. 2000;79(6)995–1006.

[6] S.S. Iyengar, How to Make Choosing Easier, 2011. Available from:
〈http://www.ted.com/talks/
sheena_iyengar_choosing_what_to_chooset-53993〉.

[7] Mogilner C, Shiv B, Iyengar SS. Eternal quest for the best: sequential (vs.
simultaneous) option presentation undermines choice commitment. J.
Consum. Res. 2013;39(6)1300–12.

L. Zehtaban et al. / Journal of Computational Design and Engineering 3 (2016) 274–285284

http://refhub.elsevier.com/S2288-4300(15)30035-X/sbref1
http://refhub.elsevier.com/S2288-4300(15)30035-X/sbref1
http://refhub.elsevier.com/S2288-4300(15)30035-X/sbref1
http://refhub.elsevier.com/S2288-4300(15)30035-X/sbref2
http://refhub.elsevier.com/S2288-4300(15)30035-X/sbref2
http://refhub.elsevier.com/S2288-4300(15)30035-X/sbref2
http://refhub.elsevier.com/S2288-4300(15)30035-X/sbref2
http://refhub.elsevier.com/S2288-4300(15)30035-X/sbref3
http://refhub.elsevier.com/S2288-4300(15)30035-X/sbref3
http://refhub.elsevier.com/S2288-4300(15)30035-X/sbref4
http://refhub.elsevier.com/S2288-4300(15)30035-X/sbref4
http://www.ted.com/talks/sheena_iyengar_choosing_what_to_choose#t-53993
http://www.ted.com/talks/sheena_iyengar_choosing_what_to_choose#t-53993
http://www.ted.com/talks/sheena_iyengar_choosing_what_to_choose#t-53993
http://refhub.elsevier.com/S2288-4300(15)30035-X/sbref5
http://refhub.elsevier.com/S2288-4300(15)30035-X/sbref5
http://refhub.elsevier.com/S2288-4300(15)30035-X/sbref5

[8] Opitz H. Verschlüsselungsrichtlinien und Definitionen zum werkstück-
beschreibenden Klassifizierungssystem. Essen: Girardet; 1966. [In
German].

[9] Opitz H. A Classification System to Describe Workpieces. New York:
Pergamon Press; 1970. Translated by Acton Taylor.

[10] Hong T, Lee K, Kim S. Similarity comparison of mechanical parts to
reuse existing designs. Comput.-Aided Des. 2006;38:973–84.

[11] Roller D. Design by features: an approach to high level shape manipula-
tions. J. Comput. Ind. 1989;12(3)185–91.

[12] Shannon S. Trends in Computer Science. New York: NOVA Science
Publisher, Inc.; 2004.

[13] Salvendy G. Handbook of Industrial Engineering Technology and
Operations Management, 18. New York: John Wiley & Sons, Inc.; 2001.

[14] Henderson M, Musti S. Automated group technology part coding from a
three-dimensional CAD database. J. Manuf. Sci. Eng. 1988;110:278–87.

[15] Kyprianou LK. Shape Classification in Computer-Aided Design. 1980.
Doctoral Dissertation.

[16] Pickett MS, Boyse JW. Solid Modeling by Computers: From Theory to
Applications. New York, USA: Plenum Press; 1984.

[17] Liao T, Lee K. Integration of a feature-based CAD system and an ART1
neural model for GT coding and part-family forming. J. Comput. Ind.
Eng. 1994;26:93–104.

[18] Kaparthi S, Suresh N. A neural network system for shape-based
classification and coding of rotational parts. Int. J. Prod. Res. 1991;29:
1771–84.

[19] P. Jiantao, L. Yi, X. Guyu, Z. Hongbin, L. Weibin, Y. Uehara, 3D model
retrieval based on 2D slice similarity measurements, in: Proceedings of the
2nd International Symposium on 3D Data Processing, Visualization and
Transmission, 6–9 September, Thessalonoki, Greece, 2004, pp. 95–101.

[20] Wei S, Tie-Qiang M, Li G. A new CAD models retrieval method based
on shape similarity. Inf. Technol. J. 2009;8:708–16.

[21] Li M, Zhang YF, Fuh JYH, Qiu ZM. Toward effective mechanical design
reuse: CAD model retrieval based on general and partial shapes. J. Mech.
Des. 2009;131(12).

[22] Bai J, Gao S, Tanga W, Liu Y, Guo Y. Design reuse oriented partial
retrieval of CAD models. Comput.-Aided Des. 2010;42:1069–84.

[23] M. Marefat, C. Pitta, Similarity-based retrieval of CAD solid models for
automated reuse of machining process plans, in: Proceedings of the 3rd
Annual IEEE Conference on Automation Science and Engineering
Scottsdale, 22–25 September, AZ, USA, 2007.

[24] El-Mehalawi M, Miller R. A database system of mechanical components
based on geometric and topological similarity. Part I: representation. J.
Comput.-Aided Des. 2003;35:83–94.

[25] El-Mehalawi M, Miller R. A database system of mechanical components
based on geometric and topological similarity. Part II: indexing, retrieval,

matching and similarity assessment. J. Comput.-Aided Des. 2003;35:
95–105.

[26] Ansaldi S, De Floriani L, Falcidieno B. Geometric modeling of solid
objects by using a face adjacency graph representation. ACM SIGGRAPH
Comput. Gr. 1985;19(3)131–13

[27] L. Zehtaban, D. Roller, Automated rule-based system for Opitz feature
recognition and code generation from STEP, Computer-Aided Design
and Applications, Taylor & Francis, USA, ISSN 1686-4360, Published
online: 16.12.15.

[28] Mešina M, Roller D, Lampasona C. Mapping of Semantic Distances into
Geometrical Coordinates – Visualisation of Semantic Networks, 1st ed.,
Achen (DE): Shaker Verlag; 397–408.

[29] Cha SH. Comprehensive survey on distance/similarity measures between
probability density functions. Int. J. Math. Models Methods Appl. Sci.
2007;1(4)300–7.

[30] Zehtaban L, Roller D. Beyond similarity comparison: intelligent data
retrieval for CAD/CAM designs. Comput.-Aided Des. Appl. 2013;10(5)
789–802.

[31] M. Bilenko, R. Moone, Adaptive duplicate detection using learnable
string similarity measures, in: Proceedings of the Ninth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining
(KDD-2003), August, Washington DC, USA, 2003, pp. 39–48.

[32] K. Audhkhasi, A. Verma, Keyword search using modified minimum edit
distance measure, in: Proceedings of IEEE International Conference on
Acoustics, Speech and Signal Processing ICASSP, 15–20 April, 2007,
ISSN: 1520-6149, IV-929-IV-932.

[33] J. Lu, J. Callan, Content-based retrieval in hybrid peer-to-peer networks,
in: Proceedings of the 12th International Conference on Information and
Knowledge Management, 3–8 November, New Orleans, USA, 2003,
pp. 199–206.

[34] M. Wester, J. Frankel, S. King, Asynchronous articulatory feature
recognition using dynamic Bayesian networks, in: Proceedings of
International Conference on Spoken Language Processing (ICSLP), 4–8
October, Jeju Island, Korea, 2004, pp. 1477–1480.

[35] P. Shilane, P. Min, M. Kazhdan, T. Funkhouser, The princeton shape
benchmark, in: Proceedings of the Conference on Shape Modeling
International, 7–9 June, Genoa, Italy, 2004, pp. 167–178.

[36] D. Bespalov, C. Yiu Ip, W. Regli, J. Shaffer, Benchmarking CAD search
techniques, in: Proceedings of the 2005 ACM Symposium on Solid and
Physical Modeling (SPM'05), New York, USA, 2005, pp. 275–286.

[37] Jayanti S, Kalyanaraman Y, Iyer N, Ramani K. Developing an engineer-
ing shape benchmark for CAD models. Comput.-Aided Des. 2006;38:
939–53.

L. Zehtaban et al. / Journal of Computational Design and Engineering 3 (2016) 274–285 285

http://refhub.elsevier.com/S2288-4300(15)30035-X/sbref6
http://refhub.elsevier.com/S2288-4300(15)30035-X/sbref6
http://refhub.elsevier.com/S2288-4300(15)30035-X/sbref6
http://refhub.elsevier.com/S2288-4300(15)30035-X/sbref7
http://refhub.elsevier.com/S2288-4300(15)30035-X/sbref7
http://refhub.elsevier.com/S2288-4300(15)30035-X/sbref8
http://refhub.elsevier.com/S2288-4300(15)30035-X/sbref8
http://refhub.elsevier.com/S2288-4300(15)30035-X/sbref9
http://refhub.elsevier.com/S2288-4300(15)30035-X/sbref9
http://refhub.elsevier.com/S2288-4300(15)30035-X/sbref10
http://refhub.elsevier.com/S2288-4300(15)30035-X/sbref10
http://refhub.elsevier.com/S2288-4300(15)30035-X/sbref11
http://refhub.elsevier.com/S2288-4300(15)30035-X/sbref11
http://refhub.elsevier.com/S2288-4300(15)30035-X/sbref11
http://refhub.elsevier.com/S2288-4300(15)30035-X/sbref12
http://refhub.elsevier.com/S2288-4300(15)30035-X/sbref12
http://refhub.elsevier.com/S2288-4300(15)30035-X/sbref13
http://refhub.elsevier.com/S2288-4300(15)30035-X/sbref13
http://refhub.elsevier.com/S2288-4300(15)30035-X/sbref14
http://refhub.elsevier.com/S2288-4300(15)30035-X/sbref14
http://refhub.elsevier.com/S2288-4300(15)30035-X/sbref15
http://refhub.elsevier.com/S2288-4300(15)30035-X/sbref15
http://refhub.elsevier.com/S2288-4300(15)30035-X/sbref15
http://refhub.elsevier.com/S2288-4300(15)30035-X/sbref16
http://refhub.elsevier.com/S2288-4300(15)30035-X/sbref16
http://refhub.elsevier.com/S2288-4300(15)30035-X/sbref16
http://refhub.elsevier.com/S2288-4300(15)30035-X/sbref17
http://refhub.elsevier.com/S2288-4300(15)30035-X/sbref17
http://refhub.elsevier.com/S2288-4300(15)30035-X/sbref18
http://refhub.elsevier.com/S2288-4300(15)30035-X/sbref18
http://refhub.elsevier.com/S2288-4300(15)30035-X/sbref18
http://refhub.elsevier.com/S2288-4300(15)30035-X/sbref19
http://refhub.elsevier.com/S2288-4300(15)30035-X/sbref19
http://refhub.elsevier.com/S2288-4300(15)30035-X/sbref20
http://refhub.elsevier.com/S2288-4300(15)30035-X/sbref20
http://refhub.elsevier.com/S2288-4300(15)30035-X/sbref20
http://refhub.elsevier.com/S2288-4300(15)30035-X/sbref21
http://refhub.elsevier.com/S2288-4300(15)30035-X/sbref21
http://refhub.elsevier.com/S2288-4300(15)30035-X/sbref21
http://refhub.elsevier.com/S2288-4300(15)30035-X/sbref21
http://refhub.elsevier.com/S2288-4300(15)30035-X/sbref22
http://refhub.elsevier.com/S2288-4300(15)30035-X/sbref22
http://refhub.elsevier.com/S2288-4300(15)30035-X/sbref22
http://refhub.elsevier.com/S2288-4300(15)30035-X/sbref23
http://refhub.elsevier.com/S2288-4300(15)30035-X/sbref23
http://refhub.elsevier.com/S2288-4300(15)30035-X/sbref23
http://refhub.elsevier.com/S2288-4300(15)30035-X/sbref24
http://refhub.elsevier.com/S2288-4300(15)30035-X/sbref24
http://refhub.elsevier.com/S2288-4300(15)30035-X/sbref24
http://refhub.elsevier.com/S2288-4300(15)30035-X/sbref25
http://refhub.elsevier.com/S2288-4300(15)30035-X/sbref25
http://refhub.elsevier.com/S2288-4300(15)30035-X/sbref25
http://refhub.elsevier.com/S2288-4300(15)30035-X/sbref26
http://refhub.elsevier.com/S2288-4300(15)30035-X/sbref26
http://refhub.elsevier.com/S2288-4300(15)30035-X/sbref26

