• Title/Summary/Keyword: Processing Parameters

Search Result 2,728, Processing Time 0.032 seconds

Laser Engraving of Plasma Sprayed Ceramic Coatings (플라즈마 용사된 세라믹 코팅층의 레이저 홈가공)

  • Bang, Se Yoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.1
    • /
    • pp.142-149
    • /
    • 1997
  • Ceramic-coated anilox roll for printing is resistant to corrosion and wear, and hence has enhanced life and quality. Laser engraving is used typically for machining holes to store ink in this roll. Since engraved hole size and shape are directly related to laser processing parameters, it is necessary to know the rela- tionships among these parameters. In this study, the parameters for engraving of ;oasma sprayed ceramic coatings with Nd:YAG laser were studied. Relationships between hole shape and processing parameters were analyzed. Cr$_{2}$O$_{3}$ceramic was found to be most suitable for Nd:YAG laser engraving. It was found that hole depth can be increased by using higher energy pulses. Effect of using different assistant gases was small to the final results. For better results, it was suggested to use a very stable laser with shorter pulses and higher pulse energy.

  • PDF

A FREQUENCY DOMAIN RAW SIGNAL SIMULATOR FOR SAR

  • Kwak Sunghee;Kim Moon-Gyu;Shin Dongseok;Shin Jae-Min
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.530-533
    • /
    • 2005
  • A raw signal simulator for synthetic aperture radar (SAR) is a useful tool for the design and implementation of SAR system. Also, in order to analyze and verify the developed SAR processor, the raw signal simulator is required. Moreover, there is the need for a test system to help designing new SAR sensors and mission of SAR system. The derived parameters of the SAR simulator also help to generate accurate SAR processing algorithms. Although the ultimate purpose of this research is to presents a general purpose SAR simulator, this paper presents a SAR simulator in frequency domain at the first step. The proposed simulator generates the raw signal by changing various simulation parameters such as antenna parameters, modulation parameters, and sampling parameters. It also uses the statistics from an actual SAR image to imitate actual physical scattering. This paper introduces the procedures and parameters of the simulator, and presents the simulation results. Experiments have been conducted by comparing the simulated raw data with original raw SAR image. In addition, the simulated raw data have been verified through commercial SAR processing software.

  • PDF

The Effects of Processing Variables on Gas Penetration in Gas-Assisted Powder Injection Molding(GAPIM) (가스분말사출성형에서 공정조건 변화가 중공부 형성에 미치는 영향)

  • Kim, D.H.;Park, H.P.;Lee, K.H.;Cha, B.S.;Choi, J.H.;Rhee, B.O.;Tovar, Jorge A.
    • Transactions of Materials Processing
    • /
    • v.21 no.2
    • /
    • pp.107-112
    • /
    • 2012
  • Gas-assisted injection molding(GAIM) produces parts with hollow internal sections. The technique offers benefits to powder injection molding(PIM), with lower material usage and reduced time for de-binding processes. In this study, the effects of processing parameters on gas penetration length of gas-assisted powder injection molding(GAPIM) were investigated for SUS316L stainless steel powder feedstock. Experiments were planned based on the Taguchi method, involving processing variables such as melt temperature, shot size, gas pressure, and gas delay time. The most significant parameters affecting gas penetration length were gas delay time and shot size, while the effects of melt temperature and gas pressure was relatively insignificant.

Num Worker Tuner: An Automated Spawn Parameter Tuner for Multi-Processing DataLoaders

  • Synn, DoangJoo;Kim, JongKook
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.446-448
    • /
    • 2021
  • In training a deep learning model, it is crucial to tune various hyperparameters and gain speed and accuracy. While hyperparameters that mathematically induce convergence impact training speed, system parameters that affect host-to-device transfer are also crucial. Therefore, it is important to properly tune and select parameters that influence the data loader as a system parameter in overall time acceleration. We propose an automated framework called Num Worker Tuner (NWT) to address this problem. This method finds the appropriate number of multi-processing subprocesses through the search space and accelerates the learning through the number of subprocesses. Furthermore, this method allows memory efficiency and speed-up by tuning the system-dependent parameter, the number of multi-process spawns.

Digital Signal Processing Based on Fuzzy Rules

  • Arakawa, Kaoru
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1305-1308
    • /
    • 1993
  • A novel digital signal processing technique based on fuzzy rules is proposed for estimating nonstationary signals, such as image signals, contaminated with additive random noises. In this filter, fuzzy rules are utilized to set the filter parameters, taking the local characteristics of the signal into consideration. The introduction of the fuzzy rules is effective, since the rules to set the filter parameters is usually expressed ambiguously. Computer simulations verify its high performance.

  • PDF

Position Control of Fuzzy-Sliding Mode Controller (퍼지-슬라이딩모드 제어를 이용한 위치제어에 관한 연구)

  • 한경욱;임영도
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.12a
    • /
    • pp.221-224
    • /
    • 2000
  • We consider one of robust controller, fuzzy-sliding mode controller dealing with model uncertainty, simplified representation of nonlinear system, changed parameters of plant. We propose fuzzy-sliding mode algorithm which provides control input that has system states approaching the choosed sliding surface. This fuzzy controller has a rule base to get initial states converged on sliding surface. This algorithm Is applied to a transfer function of DC motor to be modeled simply and do position control of DC motor due to system parameters. We compare fuzzy-sliding mode controller to both sliding mode controller and fuzzy controller to identify roust control.

  • PDF

DC Motor Control using Regression Equation and PID Controller (회귀방정식과 PID제어기에 의한 DC모터 제어)

  • 서기영;이수흠;문상필;이내일;최종수
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.08a
    • /
    • pp.129-132
    • /
    • 2000
  • We propose a new method to deal with the optimized auto-tuning for the PID controller which is used to the process -control in various fields. First of all, in this method, initial values of DC motor are determined by the Ziegler-Nichols method. Finally, after studying the parameters of PID controller by input vector of multiple regression analysis, when we give new K, L, T values to multiple regression model, the optimized parameters of PID controller is found by multiple regression analysis program.

  • PDF

Implementation of Embedded System Based Simulator Controller Using Camera Motion Parameter Extractor (카메라 모션 벡터 추출기를 이용한 임베디드 기반 가상현실 시뮬레이터 제어기의 설계)

  • Lee Hee-Man;Park Sang-Jo
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.4
    • /
    • pp.98-108
    • /
    • 2006
  • In the past, the Image processing system is independently implemented and has a limit in its application to a degree of simple display. The scope of present image processing system is diversely extended in its application owing to the development of image processing IC chips. In this paper, we implement the image processing system operated independently without PC by converting analogue image signals into digital signals. In the proposed image processing system, we extract the motion parameters from analogue image signals and generate the virtual movement to Simulator and operate Simulator by extracting motion parameters.

  • PDF

Effect of Processing Conditions on the Deep Drawability of Ti-6Al-4V Sheet at Warm Temperatures (Ti-6Al-4V판재의 온간 딥드로잉 성형성에 미치는 공정변수의 영향)

  • Shin, G.S.;Park, J.G.;Kim, J.H.;Kim, Y.S.;Park, Y.H.;Park, N.K.
    • Transactions of Materials Processing
    • /
    • v.24 no.1
    • /
    • pp.5-12
    • /
    • 2015
  • In the current study, fundamental deep drawing characteristics of Ti-6Al-4V alloy sheets were investigated to establish the effect of processing conditions on large size square deep drawn cups. To accomplish this study, FE-simulations (Abaqus) were performed to determine optimum blank size, friction coefficient, the gap between punch and die, etc. The simulated processing parameters were verified experimentally. Based on the FE-simulation results, deep drawing was performed with various blank holding loads and sample sizes. In order to improve the formability of Ti-6Al-4V sheet, various lubricant methods were evaluated. Tensile tests and thickness measurements were conducted on the formed sheets. Processing parameters including blank holding force, lubricants, and optimum blank size, were selected to achieve improved drawing quality. With the optimum processing condition, a $200mm{\times}200mm$ cup was deep drawn successfully.

A Study on Signal Parameters Estimation via Nonlinear Minimization

  • Jeong, Jung-Sik
    • Journal of Navigation and Port Research
    • /
    • v.28 no.4
    • /
    • pp.305-309
    • /
    • 2004
  • The problem for parameters estimation of the received signals impinging on array sensors has long been of great research Interest in a great variety of applications, such as radar, sonar, and land mobile communications systems. Conventional subspace-based algorithms, such as MUSIC and ESPRIT, require an extensive computation of inverse matrix and eigen-decomposition In this paper, we propose a new parameters estimation algorithm via nonlinear minimization, which is simplified computationally and estimates signal parameters simultaneously.