• 제목/요약/키워드: Processing Method

검색결과 18,068건 처리시간 0.046초

동해 해역에서 양상태 잔향음 통계적 특징 분석 (Analysis of statistical characteristics of bistatic reverberation in the east sea)

  • 염수현;윤승현;양해상;성우제
    • 한국음향학회지
    • /
    • 제41권4호
    • /
    • pp.435-445
    • /
    • 2022
  • 최근 단상태 소나의 표적탐지에 대한 한계로 인해 양상태 소나의 사용이 늘어나고 있다. 또한 소나 시스템이 고해상도의 성능으로 발전하면서 잔향음의 확률분포가 다양한 형태로 나타나 이에 대한 연구가 활발히 이루어 지고 있다. 본 연구에서는 2020년 7월, 동해 천해환경에서 수행된 양상태 소나의 잔향음을 분석하였다. 잔향음 센서 데이터는 Linear Frequency Modulated(LFM) 음원을 예인하는 연구선과 이로부터 1 km~ 5 km 떨어진 수평 선배열 수신기를 통해 수집되었으며 빔 형성 및 프리엠프 게인(Preamp-gain) 보상과정 등의 신호처리를 거친 후 Geo-plot을 비롯한 다양한 방법으로 분석되었다. 이를 통해 음원에서 산란체를 거쳐 수신기로 반향되는 각도가 잔향음의 분포에 지배적인 영향을 미친다는 점과 빔별로 잔향음 확률분포가 달라진다는 양상태 소나 잔향음의 특징을 확인할 수 있었다. 또한, 모멘트 추정 기법을 통해 샘플로부터 K 분포 및 레일리 분포의 모수 인자를 추정하였으며 Kolmogorov-Smirnov test(K-S test) 기법을 이용하여 유의수준 0.05에서 데이터가 어느 확률분포에 일치하는 지를 분석하였다. 결과적으로 잔향음이 레일리 확률분포를 따른다는 것을 관찰할 수 있었으며 이는 낮은 Reveration to Noise Ratio(RNR)의 영향임을 추정할 수 있었다.

KOMPSAT-3와 Sentinel-1 SAR 영상을 적용한 토양 수분도와 NDWI 결과 비교 분석 (Comparative Analysis of NDWI and Soil Moisture Map Using Sentinel-1 SAR and KOMPSAT-3 Images)

  • 이지현;김광섭;이기원
    • 대한원격탐사학회지
    • /
    • 제38권6_4호
    • /
    • pp.1935-1943
    • /
    • 2022
  • 위성 영상을 활용하여 대규모 또는 정밀 토양 수분도를 제작하는 방법의 개발과 이를 적용한 사례 연구는 원격탐사 응용 분야에서 중요한 연구 주제 중 하나이다. 이 연구는 제주도 연구 지역을 대상으로 토양 수분도를 제작하였다. 이를 위하여 선형으로 조정된 Synthetic Aperture Radar (SAR) 편광 영상과 입사각 정보를 이용하여 광학 영상과 함께 토양 수분도를 산출하였다. SAR 영상은 Google Earth Engine (GEE)에서 제공하는 후반 산란 계수 Analysis Ready Data (ARD) 자료를 사용하였다. 또한 Environmental Systems Research Institute (ESRI)의 토지 피복도(land cover map)와 KOMPSAT-3 고해상도 위성 영상의 지표 반사도로부터 산출한 식생 지수 정보(normalized difference vegetation index, NDVI)를 토양 수분도 처리 과정에 적용하였다. 이처럼 SAR 영상과 광학영상 정보를 융합하여 처리하는 경우는 토양 수분 산출물의 신뢰도를 향상할 수 있는 것으로 알려져 있다. 산출물의 과학적 분석을 위하여 KOMPSAT-3 영상으로 제작한 정규 수분 지수(normalized difference water index, NDWI)와 비교 분석을 실시하였다. 그리고 KOMPSAT-3 처리 결과의 검증을 위하여 Landsat-8 위성의 NDWI 처리 결과와 비교하였다. 이 연구를 통하여 산출한 토양 수분도 결과는 KOMPSAT-3 영상과 Landsat-8 위성으로 각각 처리한 NDWI 처리 결과와 높은 상관도를 나타냈다. 마지막으로 이 연구에 사용한 토양 수분 산출 알고리즘을 우리나라 고해상도 위성인 KOMPSAT-5 영상에 맞게 추가 개발하면 다른 외부 영상 없이 KOMPSAT 광학 위성정보와 KOMPSAT SAR 영상정보를 이용한 정밀 토양 수분도 제작이 가능할 것이라고 생각한다.

AI기반 상수도시설 개량 의사결정 모델 분석 (Model Analysis of AI-Based Water Pipeline Improved Decision)

  • 김기태;민병원;오용선
    • 사물인터넷융복합논문지
    • /
    • 제8권5호
    • /
    • pp.11-16
    • /
    • 2022
  • 상수도분야 인공지능 기술개발 관심도가 증가함에 따라 상수도 관로에 대해서 노후관 상태평가 데이터 결과를 활용하여 반복적인 학습으로 개량 의사결정 등급을 예측할 수 있는 인공신경망 알고리즘을 개발하고 검증과정을 통하여 가장 신뢰성 있는 예측 모델을 제시하고자 한다. 2020년 한강유역의 노후관로 정비 기본계획에 의한 간접평가 데이터 12개 항목을 기반으로 데이터 전처리 하고 인공신경망 알고리즘을 적용하여 반복학습과 검증을 통해 계산된 결과값과 직접평가 결과값의 일치율이 90% 이상이 되도록 역전파 과정을 통해 가중치를 업데이트 하면서 최적화하여 관로 등급을 예측하는 알고리즘을 개발하였다. 알고리즘 정확도 검증결과 모든 관종 데이터가 고르게 분포되어 있고 학습 데이터가 많아야 예측평가 정확도가 높아지는 것을 확인할 수 있었다. 향후 전국의 다양한 데이터가 확보되면 인공신경망을 이용한 관로등급 예측의 신뢰도가 좀 더 향상되어 객관화된 노후관 상태평가 의사결정 지원 역할을 수행할 수 있을 것으로 기대된다.

SDN과 허니팟 기반 동적 파라미터 조절을 통한 지능적 서비스 거부 공격 차단 (Blocking Intelligent Dos Attack with SDN)

  • 윤준혁;문성식;김미희
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제11권1호
    • /
    • pp.23-34
    • /
    • 2022
  • 네트워크 기술의 발달로 그 적용 영역 또한 다양해지면서 다양한 목적의 프로토콜이 개발되고 트래픽의 양이 폭발적으로 증가하게 되었다. 따라서 기존의 전통적인 스위칭, 라우팅 방식으로는 네트워크 관리자가 망의 안정성과 보안 기준을 충족하기 어렵다. 소프트웨어 정의 네트워킹(SDN)은 이러한 문제를 해결하기 위해 제시된 새로운 네트워킹 패러다임이다. SDN은 네트워크 동작을 프로그래밍하여 효율적으로 네트워크를 관리할 수 있도록 한다. 이는 네트워크 관리자가 다양한 여러 양상의 공격에 대해서 유연한 대응을 할 수 있는 장점을 가진다. 본 논문에서는 SDN의 이러한 특성을 활용하여 SDN 구성 요소인 컨트롤러와 스위치를 통해 공격 정보를 수집하고 이를 기반으로 공격을 탐지하는 위협 레벨 관리 모듈, 공격 탐지 모듈, 패킷 통계 모듈, 플로우 규칙 생성기를 설계하여 프로그래밍하고 허니팟을 적용하여 지능형 공격자의 서비스 거부 공격(DoS)을 차단하는 방법을 제시한다. 제안 시스템에서 공격 패킷은 수정 가능한 플로우 규칙에 의해 허니팟으로 빠르게 전달될 수 있도록 하였으며, 공격 패킷을 전달받은 허니팟은 이를 기반으로 지능적 공격의 패턴을 분석하도록 하였다. 분석 결과에 따라 지능적 공격에 대응할 수 있도록 공격 탐지 모듈과 위협 레벨 관리 모듈을 조정한다. 제안 시스템을 실제로 구현하고 공격 패턴 및 공격 수준을 다양화한 지능적 공격을 수행하고 기존 시스템과 비교하여 공격 탐지율을 확인함으로써 제안 시스템의 성능과 실현 가능성을 보였다.

결합된 파라메트릭 활성함수를 이용한 완전연결신경망의 성능 향상 (Performance Improvement Method of Fully Connected Neural Network Using Combined Parametric Activation Functions)

  • 고영민;이붕항;고선우
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제11권1호
    • /
    • pp.1-10
    • /
    • 2022
  • 완전연결신경망은 다양한 문제를 해결하는데 널리 사용되고 있다. 완전연결신경망에서 비선형활성함수는 선형변환 값을 비선형 변환하여 출력하는 함수로써 비선형 문제를 해결하는데 중요한 역할을 하며 다양한 비선형활성함수들이 연구되었다. 본 연구에서는 완전연결신경망의 성능을 향상시킬 수 있는 결합된 파라메트릭 활성함수를 제안한다. 결합된 파라메트릭 활성함수는 간단히 파라메트릭 활성함수들을 더함으로써 만들어낼 수 있다. 파라메트릭 활성함수는 입력데이터에 따라 활성함수의 크기와 위치를 변환시키는 파라미터를 도입하여 손실함수를 최소화하는 방향으로 최적화할 수 있는 함수이다. 파라메트릭 활성함수들을 결합함으로써 더욱 다양한 비선형간격을 만들어낼 수 있으며 손실함수를 최소화하는 방향으로 파라메트릭 활성함수들의 파라미터를 최적화할 수 있다. MNIST 분류문제와 Fashion MNIST 분류문제를 통하여 결합된 파라메트릭 활성함수의 성능을 실험하였고 그 결과 기존에 사용되는 비선형활성함수, 파라메트릭 활성함수보다 우수한 성능을 가짐을 확인하였다.

간이 칼집에서의 잠재지문 분포에 관한 연구 (A study on the distribution of latent fingerprints on paper knife sheaths)

  • 김효미;박기현;이수빈;유제설
    • 분석과학
    • /
    • 제34권6호
    • /
    • pp.251-258
    • /
    • 2021
  • 현재까지 강력 사건에서 범인들은 칼을 흉기로 가장 많이 사용하였으며 범죄 현장에 범인이 직접 종이와 테이프로 제작한 간이 칼집이 남아있는 경우가 있다. 다공성 표면에 테이프가 붙어있는 검체는 지문을 현출하기 어려우므로 간이 칼집과 같은 증거물이 발견되었을 때 각 표면에서 지문을 현출하는 적절한 기법과 지문의 분포 위치를 확인하는 실험이 필요하다. 본 연구는 이를 확인하기 위해 간이 칼집 50개를 만들어 테이프 비접착면에 cyanoacrylate fuming (CA fuming)을 사용하여 지문을 현출하고 이중목적 1,2-indanedione/Zn (1,2-IND/Zn) 시약으로 종이와 테이프를 박리함과 동시에 종이에 있는 지문을 현출하였다. 테이프 접착면은 Wet Powder Black®을 사용하여 지문을 현출하였다. R program을 이용하여 heatmap으로 각 표면에서 지문이 현출된 위치를 표시한 결과, 테이프 접착면의 중간 부분보다 양끝에 지문이 많이 분포되어 있는 것을 확인할 수 있었으며 비접착면과 종이는 뚜렷한 분포 패턴이 나타나는 것은 아니나 개인식별에 이용할 수 있을 정도의 선명도를 가진 지문이 다수 현출된 것을 확인하였다. 범죄 현장에서 간이 칼집이 발견되었을 때 이러한 연구 결과를 참고하여 증거물을 처리할 수 있을 것이다.

AI를 활용한 시추주상도 자동 디지털 DB화 방안에 관한 연구 (A Study on the Automatic Digital DB of Boring Log Using AI)

  • 박가현;한진태;윤영노
    • 한국지반공학회논문집
    • /
    • 제37권11호
    • /
    • pp.119-129
    • /
    • 2021
  • 국토지반정보 포털시스템에서 관리되는 지반정보는 사람이 직접 PDF 파일을 보고 일일이 타이핑을 해서 구축하고 있기 때문에 인적·시간적 자원 소모가 크며, 정확도 문제가 빈번하게 발생한다. 본 연구에서는 다양한 지반정보 중에서 국내에서 가장 일반적이고 널리 활용되고 있는 시추주상도를 대상으로 인공지능(Artificial Intelligence, AI)을 활용하여 자동 디지털 데이터베이스 구축하는 방안에 대해 제안하였다 우선, 다양한 시추주상도 양식에 대해서도 예외없이 데이터를 자동으로 데이터베이스화 하기 위해서 딥러닝모델 ResNet 34를 이용하여 시추주상도 양식분류를 하였으며, 총 6가지 시추주상도 양식에 대해 이미지 분류를 진행하여 전체 정확도(accuracy)는 99.7, ROC_AUC score는 1.0의 매우 높은 정확도로 시추주상도 양식을 분리할 수 있었다. 이 후, 각각의 양식에 대하여 미세조정(fine-tuning)된 로보틱 처리 자동화 기법을 이용하여 PDF 내 텍스트를 자동으로 읽어 들인 후 시추주상도 내 일반정보, SPT 시험정보 및 지층정보에 대해 데이터를 추출, 분리하여 이 값들을 기존 국토지반정보 포털시스템에서 제공하는 형태와 동일한 형태의 DB로 구축하도록 구현하였다. 최종적으로 기존 국토지반정보 포털시스템에서 제공하는 형태와 동일한 형태로 시추주상도내 정보를 초당 140페이지의 속도로 자동으로 DB화 할 수 있었다.

학술논문 내에서 참고문헌 정보가 포함된 서지 메타데이터 자동 생성 연구 (Automatic Generation of Bibliographic Metadata with Reference Information for Academic Journals)

  • 정선기;신현호;지선영;최성필
    • 한국문헌정보학회지
    • /
    • 제56권3호
    • /
    • pp.241-264
    • /
    • 2022
  • 서지정보는 연구 주제의 최신 동향의 인지와 유용성을 검증하는 데에 참고할 수 있다. 즉, 각자 연구자들이 필요로 하는 문헌에 신속하게 접근하기 위해서는 학술논문에서 저자 정보, 요약, 초록, 참고문헌 등을 쉬운 방법으로 파악해야 한다. 그러나, 현재 출판되는 PDF 형식의 전자 학술논문은 출판 주체별로 고유한 양식을 띄고 있어서, 몇몇 특징에 의한 규칙 기반 추출법으로는 수많은 문헌에서 목표 정보를 추출하여 요약된 서지사항으로 자동 생성하기 어렵다. 이에 본 연구는 학술논문 서지사항 자동 생성에 있어서 양식의 다양성으로 인한 메타데이터 자동 추출의 난점을 극복할 방법을 제안한다. 제안하는 모델은 서지사항이 주로 기술되는 학술논문의 첫 페이지에서 목표 영역과 본문의 시작점을 구분할 수 있는 심층신경망 기반 모델과 앞의 모델로 추출된 서지사항을 상세한 메타데이터로 분류하고 재생성하는 규칙 기반 모델로 구성된다. 제안하는 모델은 참고문헌 요약정보를 생성하는 모델도 포함하는데, 본문의 말미와 참고문헌 시작점의 분리, 그리고 개별 참고문헌 추출을 규칙 기반 방법으로 진행하고, 추출한 각개 참고문헌의 서지정보를 분류하는 데에 심층신경망을 이용하도록 구성하였다. 추가로, 논문 자체의 서지정보를 전후처리 없이 추출/생성하는 모델의 가능성을 확인하기 위하여 참고문헌 영역까지 아우르는 모델을 구축하여 비교 실험을 진행하였다. 실험 결과 본 논문에서 제안하는 방식이 서지정보를 전후처리 하지 않고 진행한 비교 실험에 비하여 더 높은 성능을 보였다.

인공지능 서비스 운영을 위한 시스템 측면에서의 연구 (A Study on the System for AI Service Production)

  • 홍용근
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제11권10호
    • /
    • pp.323-332
    • /
    • 2022
  • AI 기술을 활용한 다양한 서비스가 개발되면서, AI 서비스 운영에 많은 관심이 집중되고 있다. 최근에는 AI 기술도 하나의 ICT 서비스를 보고, 범용적인 AI 서비스 운영을 위한 연구가 많이 진행되고 있다. 본 논문에서는 일반적인 기계학습 개발 절차의 마지막 단계인 기계학습 모델 배포 및 운영에 초점을 두고 AI 서비스 운영을 위한 시스템 측면에서의 연구 결과를 기술하였다. 3대의 서로 다른 Ubuntu 시스템을 구축하고, 이 시스템상에서 서로 다른 AI 모델(RFCN, SSD-Mobilenet)과 서로 다른 통신 방식(gRPC, REST)의 조합으로 2017 validation COCO dataset의 데이터를 이용하여 객체 검출 서비스를 Tensorflow serving을 통하여 AI 서비스를 요청하는 부분과 AI 서비스를 수행하는 부분으로 나누어 실험하였다. 다양한 실험을 통하여 AI 모델의 종류가 AI 머신의 통신 방식보다 AI 서비스 추론 시간에 더 큰 영향을 미치고, 객체 검출 AI 서비스의 경우 검출하려는 이미지의 파일 크기보다는 이미지 내의 객체 개수와 복잡도에 따라 AI 서비스 추론 시간이 더 큰 영향을 받는다는 것을 알 수 있었다. 그리고, AI 서비스를 로컬이 아닌 원격에서 수행하면 성능이 좋은 머신이라고 하더라도 로컬에서 수행하는 경우보다 AI 서비스 추론 시간이 더 걸린다는 것을 확인할 수 있었다. 본 연구 결과를 통하여 서비스 목표에 적합한 시스템 설계와 AI 모델 개발 및 효율적인 AI 서비스 운영이 가능해질 것으로 본다.

인공신경망 기계번역에서 말뭉치 간의 균형성을 고려한 성능 향상 연구 (A study on performance improvement considering the balance between corpus in Neural Machine Translation)

  • 박찬준;박기남;문현석;어수경;임희석
    • 한국융합학회논문지
    • /
    • 제12권5호
    • /
    • pp.23-29
    • /
    • 2021
  • 최근 딥러닝 기반 자연언어처리 연구들은 다양한 출처의 대용량 데이터들을 함께 학습하여 성능을 올리고자 하는 연구들을 진행하고 있다. 그러나 다양한 출처의 데이터를 하나로 합쳐서 학습시키는 방법론은 성능 향상을 막게 될 가능성이 존재한다. 기계번역의 경우 병렬말뭉치 간의 번역투(의역, 직역), 어체(구어체, 문어체, 격식체 등), 도메인 등의 차이로 인하여 데이터 편차가 발생하게 되는데 이러한 말뭉치들을 하나로 합쳐서 학습을 시키게 되면 성능의 악영향을 미칠 수 있다. 이에 본 논문은 기계번역에서 병렬말뭉치 간의 균형성을 고려한 Corpus Weight Balance (CWB) 학습 방법론을 제안한다. 실험결과 말뭉치 간의 균형성을 고려한 모델이 그렇지 않은 모델보다 더 좋은 성능을 보였다. 더불어 단일 말뭉치로도 고품질의 병렬 말뭉치를 구축할 수 있는 휴먼번역 시장과의 상생이 가능한 말뭉치 구축 프로세스를 추가로 제안한다.