최근 단상태 소나의 표적탐지에 대한 한계로 인해 양상태 소나의 사용이 늘어나고 있다. 또한 소나 시스템이 고해상도의 성능으로 발전하면서 잔향음의 확률분포가 다양한 형태로 나타나 이에 대한 연구가 활발히 이루어 지고 있다. 본 연구에서는 2020년 7월, 동해 천해환경에서 수행된 양상태 소나의 잔향음을 분석하였다. 잔향음 센서 데이터는 Linear Frequency Modulated(LFM) 음원을 예인하는 연구선과 이로부터 1 km~ 5 km 떨어진 수평 선배열 수신기를 통해 수집되었으며 빔 형성 및 프리엠프 게인(Preamp-gain) 보상과정 등의 신호처리를 거친 후 Geo-plot을 비롯한 다양한 방법으로 분석되었다. 이를 통해 음원에서 산란체를 거쳐 수신기로 반향되는 각도가 잔향음의 분포에 지배적인 영향을 미친다는 점과 빔별로 잔향음 확률분포가 달라진다는 양상태 소나 잔향음의 특징을 확인할 수 있었다. 또한, 모멘트 추정 기법을 통해 샘플로부터 K 분포 및 레일리 분포의 모수 인자를 추정하였으며 Kolmogorov-Smirnov test(K-S test) 기법을 이용하여 유의수준 0.05에서 데이터가 어느 확률분포에 일치하는 지를 분석하였다. 결과적으로 잔향음이 레일리 확률분포를 따른다는 것을 관찰할 수 있었으며 이는 낮은 Reveration to Noise Ratio(RNR)의 영향임을 추정할 수 있었다.
위성 영상을 활용하여 대규모 또는 정밀 토양 수분도를 제작하는 방법의 개발과 이를 적용한 사례 연구는 원격탐사 응용 분야에서 중요한 연구 주제 중 하나이다. 이 연구는 제주도 연구 지역을 대상으로 토양 수분도를 제작하였다. 이를 위하여 선형으로 조정된 Synthetic Aperture Radar (SAR) 편광 영상과 입사각 정보를 이용하여 광학 영상과 함께 토양 수분도를 산출하였다. SAR 영상은 Google Earth Engine (GEE)에서 제공하는 후반 산란 계수 Analysis Ready Data (ARD) 자료를 사용하였다. 또한 Environmental Systems Research Institute (ESRI)의 토지 피복도(land cover map)와 KOMPSAT-3 고해상도 위성 영상의 지표 반사도로부터 산출한 식생 지수 정보(normalized difference vegetation index, NDVI)를 토양 수분도 처리 과정에 적용하였다. 이처럼 SAR 영상과 광학영상 정보를 융합하여 처리하는 경우는 토양 수분 산출물의 신뢰도를 향상할 수 있는 것으로 알려져 있다. 산출물의 과학적 분석을 위하여 KOMPSAT-3 영상으로 제작한 정규 수분 지수(normalized difference water index, NDWI)와 비교 분석을 실시하였다. 그리고 KOMPSAT-3 처리 결과의 검증을 위하여 Landsat-8 위성의 NDWI 처리 결과와 비교하였다. 이 연구를 통하여 산출한 토양 수분도 결과는 KOMPSAT-3 영상과 Landsat-8 위성으로 각각 처리한 NDWI 처리 결과와 높은 상관도를 나타냈다. 마지막으로 이 연구에 사용한 토양 수분 산출 알고리즘을 우리나라 고해상도 위성인 KOMPSAT-5 영상에 맞게 추가 개발하면 다른 외부 영상 없이 KOMPSAT 광학 위성정보와 KOMPSAT SAR 영상정보를 이용한 정밀 토양 수분도 제작이 가능할 것이라고 생각한다.
상수도분야 인공지능 기술개발 관심도가 증가함에 따라 상수도 관로에 대해서 노후관 상태평가 데이터 결과를 활용하여 반복적인 학습으로 개량 의사결정 등급을 예측할 수 있는 인공신경망 알고리즘을 개발하고 검증과정을 통하여 가장 신뢰성 있는 예측 모델을 제시하고자 한다. 2020년 한강유역의 노후관로 정비 기본계획에 의한 간접평가 데이터 12개 항목을 기반으로 데이터 전처리 하고 인공신경망 알고리즘을 적용하여 반복학습과 검증을 통해 계산된 결과값과 직접평가 결과값의 일치율이 90% 이상이 되도록 역전파 과정을 통해 가중치를 업데이트 하면서 최적화하여 관로 등급을 예측하는 알고리즘을 개발하였다. 알고리즘 정확도 검증결과 모든 관종 데이터가 고르게 분포되어 있고 학습 데이터가 많아야 예측평가 정확도가 높아지는 것을 확인할 수 있었다. 향후 전국의 다양한 데이터가 확보되면 인공신경망을 이용한 관로등급 예측의 신뢰도가 좀 더 향상되어 객관화된 노후관 상태평가 의사결정 지원 역할을 수행할 수 있을 것으로 기대된다.
네트워크 기술의 발달로 그 적용 영역 또한 다양해지면서 다양한 목적의 프로토콜이 개발되고 트래픽의 양이 폭발적으로 증가하게 되었다. 따라서 기존의 전통적인 스위칭, 라우팅 방식으로는 네트워크 관리자가 망의 안정성과 보안 기준을 충족하기 어렵다. 소프트웨어 정의 네트워킹(SDN)은 이러한 문제를 해결하기 위해 제시된 새로운 네트워킹 패러다임이다. SDN은 네트워크 동작을 프로그래밍하여 효율적으로 네트워크를 관리할 수 있도록 한다. 이는 네트워크 관리자가 다양한 여러 양상의 공격에 대해서 유연한 대응을 할 수 있는 장점을 가진다. 본 논문에서는 SDN의 이러한 특성을 활용하여 SDN 구성 요소인 컨트롤러와 스위치를 통해 공격 정보를 수집하고 이를 기반으로 공격을 탐지하는 위협 레벨 관리 모듈, 공격 탐지 모듈, 패킷 통계 모듈, 플로우 규칙 생성기를 설계하여 프로그래밍하고 허니팟을 적용하여 지능형 공격자의 서비스 거부 공격(DoS)을 차단하는 방법을 제시한다. 제안 시스템에서 공격 패킷은 수정 가능한 플로우 규칙에 의해 허니팟으로 빠르게 전달될 수 있도록 하였으며, 공격 패킷을 전달받은 허니팟은 이를 기반으로 지능적 공격의 패턴을 분석하도록 하였다. 분석 결과에 따라 지능적 공격에 대응할 수 있도록 공격 탐지 모듈과 위협 레벨 관리 모듈을 조정한다. 제안 시스템을 실제로 구현하고 공격 패턴 및 공격 수준을 다양화한 지능적 공격을 수행하고 기존 시스템과 비교하여 공격 탐지율을 확인함으로써 제안 시스템의 성능과 실현 가능성을 보였다.
완전연결신경망은 다양한 문제를 해결하는데 널리 사용되고 있다. 완전연결신경망에서 비선형활성함수는 선형변환 값을 비선형 변환하여 출력하는 함수로써 비선형 문제를 해결하는데 중요한 역할을 하며 다양한 비선형활성함수들이 연구되었다. 본 연구에서는 완전연결신경망의 성능을 향상시킬 수 있는 결합된 파라메트릭 활성함수를 제안한다. 결합된 파라메트릭 활성함수는 간단히 파라메트릭 활성함수들을 더함으로써 만들어낼 수 있다. 파라메트릭 활성함수는 입력데이터에 따라 활성함수의 크기와 위치를 변환시키는 파라미터를 도입하여 손실함수를 최소화하는 방향으로 최적화할 수 있는 함수이다. 파라메트릭 활성함수들을 결합함으로써 더욱 다양한 비선형간격을 만들어낼 수 있으며 손실함수를 최소화하는 방향으로 파라메트릭 활성함수들의 파라미터를 최적화할 수 있다. MNIST 분류문제와 Fashion MNIST 분류문제를 통하여 결합된 파라메트릭 활성함수의 성능을 실험하였고 그 결과 기존에 사용되는 비선형활성함수, 파라메트릭 활성함수보다 우수한 성능을 가짐을 확인하였다.
현재까지 강력 사건에서 범인들은 칼을 흉기로 가장 많이 사용하였으며 범죄 현장에 범인이 직접 종이와 테이프로 제작한 간이 칼집이 남아있는 경우가 있다. 다공성 표면에 테이프가 붙어있는 검체는 지문을 현출하기 어려우므로 간이 칼집과 같은 증거물이 발견되었을 때 각 표면에서 지문을 현출하는 적절한 기법과 지문의 분포 위치를 확인하는 실험이 필요하다. 본 연구는 이를 확인하기 위해 간이 칼집 50개를 만들어 테이프 비접착면에 cyanoacrylate fuming (CA fuming)을 사용하여 지문을 현출하고 이중목적 1,2-indanedione/Zn (1,2-IND/Zn) 시약으로 종이와 테이프를 박리함과 동시에 종이에 있는 지문을 현출하였다. 테이프 접착면은 Wet Powder Black®을 사용하여 지문을 현출하였다. R program을 이용하여 heatmap으로 각 표면에서 지문이 현출된 위치를 표시한 결과, 테이프 접착면의 중간 부분보다 양끝에 지문이 많이 분포되어 있는 것을 확인할 수 있었으며 비접착면과 종이는 뚜렷한 분포 패턴이 나타나는 것은 아니나 개인식별에 이용할 수 있을 정도의 선명도를 가진 지문이 다수 현출된 것을 확인하였다. 범죄 현장에서 간이 칼집이 발견되었을 때 이러한 연구 결과를 참고하여 증거물을 처리할 수 있을 것이다.
국토지반정보 포털시스템에서 관리되는 지반정보는 사람이 직접 PDF 파일을 보고 일일이 타이핑을 해서 구축하고 있기 때문에 인적·시간적 자원 소모가 크며, 정확도 문제가 빈번하게 발생한다. 본 연구에서는 다양한 지반정보 중에서 국내에서 가장 일반적이고 널리 활용되고 있는 시추주상도를 대상으로 인공지능(Artificial Intelligence, AI)을 활용하여 자동 디지털 데이터베이스 구축하는 방안에 대해 제안하였다 우선, 다양한 시추주상도 양식에 대해서도 예외없이 데이터를 자동으로 데이터베이스화 하기 위해서 딥러닝모델 ResNet 34를 이용하여 시추주상도 양식분류를 하였으며, 총 6가지 시추주상도 양식에 대해 이미지 분류를 진행하여 전체 정확도(accuracy)는 99.7, ROC_AUC score는 1.0의 매우 높은 정확도로 시추주상도 양식을 분리할 수 있었다. 이 후, 각각의 양식에 대하여 미세조정(fine-tuning)된 로보틱 처리 자동화 기법을 이용하여 PDF 내 텍스트를 자동으로 읽어 들인 후 시추주상도 내 일반정보, SPT 시험정보 및 지층정보에 대해 데이터를 추출, 분리하여 이 값들을 기존 국토지반정보 포털시스템에서 제공하는 형태와 동일한 형태의 DB로 구축하도록 구현하였다. 최종적으로 기존 국토지반정보 포털시스템에서 제공하는 형태와 동일한 형태로 시추주상도내 정보를 초당 140페이지의 속도로 자동으로 DB화 할 수 있었다.
서지정보는 연구 주제의 최신 동향의 인지와 유용성을 검증하는 데에 참고할 수 있다. 즉, 각자 연구자들이 필요로 하는 문헌에 신속하게 접근하기 위해서는 학술논문에서 저자 정보, 요약, 초록, 참고문헌 등을 쉬운 방법으로 파악해야 한다. 그러나, 현재 출판되는 PDF 형식의 전자 학술논문은 출판 주체별로 고유한 양식을 띄고 있어서, 몇몇 특징에 의한 규칙 기반 추출법으로는 수많은 문헌에서 목표 정보를 추출하여 요약된 서지사항으로 자동 생성하기 어렵다. 이에 본 연구는 학술논문 서지사항 자동 생성에 있어서 양식의 다양성으로 인한 메타데이터 자동 추출의 난점을 극복할 방법을 제안한다. 제안하는 모델은 서지사항이 주로 기술되는 학술논문의 첫 페이지에서 목표 영역과 본문의 시작점을 구분할 수 있는 심층신경망 기반 모델과 앞의 모델로 추출된 서지사항을 상세한 메타데이터로 분류하고 재생성하는 규칙 기반 모델로 구성된다. 제안하는 모델은 참고문헌 요약정보를 생성하는 모델도 포함하는데, 본문의 말미와 참고문헌 시작점의 분리, 그리고 개별 참고문헌 추출을 규칙 기반 방법으로 진행하고, 추출한 각개 참고문헌의 서지정보를 분류하는 데에 심층신경망을 이용하도록 구성하였다. 추가로, 논문 자체의 서지정보를 전후처리 없이 추출/생성하는 모델의 가능성을 확인하기 위하여 참고문헌 영역까지 아우르는 모델을 구축하여 비교 실험을 진행하였다. 실험 결과 본 논문에서 제안하는 방식이 서지정보를 전후처리 하지 않고 진행한 비교 실험에 비하여 더 높은 성능을 보였다.
AI 기술을 활용한 다양한 서비스가 개발되면서, AI 서비스 운영에 많은 관심이 집중되고 있다. 최근에는 AI 기술도 하나의 ICT 서비스를 보고, 범용적인 AI 서비스 운영을 위한 연구가 많이 진행되고 있다. 본 논문에서는 일반적인 기계학습 개발 절차의 마지막 단계인 기계학습 모델 배포 및 운영에 초점을 두고 AI 서비스 운영을 위한 시스템 측면에서의 연구 결과를 기술하였다. 3대의 서로 다른 Ubuntu 시스템을 구축하고, 이 시스템상에서 서로 다른 AI 모델(RFCN, SSD-Mobilenet)과 서로 다른 통신 방식(gRPC, REST)의 조합으로 2017 validation COCO dataset의 데이터를 이용하여 객체 검출 서비스를 Tensorflow serving을 통하여 AI 서비스를 요청하는 부분과 AI 서비스를 수행하는 부분으로 나누어 실험하였다. 다양한 실험을 통하여 AI 모델의 종류가 AI 머신의 통신 방식보다 AI 서비스 추론 시간에 더 큰 영향을 미치고, 객체 검출 AI 서비스의 경우 검출하려는 이미지의 파일 크기보다는 이미지 내의 객체 개수와 복잡도에 따라 AI 서비스 추론 시간이 더 큰 영향을 받는다는 것을 알 수 있었다. 그리고, AI 서비스를 로컬이 아닌 원격에서 수행하면 성능이 좋은 머신이라고 하더라도 로컬에서 수행하는 경우보다 AI 서비스 추론 시간이 더 걸린다는 것을 확인할 수 있었다. 본 연구 결과를 통하여 서비스 목표에 적합한 시스템 설계와 AI 모델 개발 및 효율적인 AI 서비스 운영이 가능해질 것으로 본다.
최근 딥러닝 기반 자연언어처리 연구들은 다양한 출처의 대용량 데이터들을 함께 학습하여 성능을 올리고자 하는 연구들을 진행하고 있다. 그러나 다양한 출처의 데이터를 하나로 합쳐서 학습시키는 방법론은 성능 향상을 막게 될 가능성이 존재한다. 기계번역의 경우 병렬말뭉치 간의 번역투(의역, 직역), 어체(구어체, 문어체, 격식체 등), 도메인 등의 차이로 인하여 데이터 편차가 발생하게 되는데 이러한 말뭉치들을 하나로 합쳐서 학습을 시키게 되면 성능의 악영향을 미칠 수 있다. 이에 본 논문은 기계번역에서 병렬말뭉치 간의 균형성을 고려한 Corpus Weight Balance (CWB) 학습 방법론을 제안한다. 실험결과 말뭉치 간의 균형성을 고려한 모델이 그렇지 않은 모델보다 더 좋은 성능을 보였다. 더불어 단일 말뭉치로도 고품질의 병렬 말뭉치를 구축할 수 있는 휴먼번역 시장과의 상생이 가능한 말뭉치 구축 프로세스를 추가로 제안한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.