• Title/Summary/Keyword: Processing Element

Search Result 1,746, Processing Time 0.031 seconds

Pre-processing System for Converting Shell to Solid at Selected Weldment in Shell FE Model (선체 Shell FE 모델 내 용접부의 Solid 요소변환 자동화 시스템)

  • Yoo, Jinsun;Ha, Yunsok
    • Journal of Welding and Joining
    • /
    • v.34 no.2
    • /
    • pp.11-15
    • /
    • 2016
  • FE analyses for weldment of ship structure are required for various reasons such as stress concentration for bead tow, residual stress and distortion after welding, and hydrogen diffusion for prediction of low temperature crack. These analyses should be done by solid element modeling, but most of ship structures are modeled by shell element. If we are able to make solid element in the shell element FE modeling it is easily to solve the requirement for solid elements in weld analysis of large ship structures. As the nodes of solid element cannot take moments from nodes of shell element, these two kinds of element cannot be used in one model by conventional modeling. The PSCM (Perpendicular shell coupling method) can connect shell to solid. This method uses dummy perpendicular shell element for transferring moment from shell to solid. The target of this study is to develop a FE pre-processing system applicable at welding at ship structure by using PSCM. We also suggested glue-contact technique for controlling element numbers and element qualities and applied it between PSCM and solid element in automatic pre-processing system. The FE weldment modeling through developed pre-processing system will have rational stiffness of adjacent regions. Then FE results can be more reliable when turn-over of ship-block with semi-welded state or ECA (Engineering critical assessment) of weldment in a ship-block are analyzed.

Design Space Exploration of Many-Core Processors for Ultrasonic Image Processing at Different Resolutions (다양한 해상도의 초음파 영상처리를 위한 매니코어 프로세서의 디자인 공간 탐색)

  • Kang, Sung-Mo;Kim, Jong-Myon
    • The KIPS Transactions:PartA
    • /
    • v.19A no.3
    • /
    • pp.121-128
    • /
    • 2012
  • This paper explores the optimal processing element (PE) configuration for ultrasonic image processing at different resolutions ($256{\times}256$, $768{\times}1,024$, and $1,024{\times}1,280$). To determine the optimal PE configuration, this paper evaluates the impacts of a data-per-processing element (DPE) ratio that is defined as the amount of image data directly mapped to each PE on system performance and both energy and area efficiencies using architectural and workload simulations. This paper illustrates the correlation between DPE ratio and PE architecture for a target implementation in 130nm technology. To identify the most efficient PE structure, seven different PE configurations were simulated for ultrasonic image processing. Experimental results indicate that the highest energy efficiencies were achieved at PEs=1,024, 4,096, and 16,384 for ultrasonic images at $256{\times}256$, $768{\times}1,024$, $1,024{\times}1,280$ resolutions, respectively. Furthermore, the maximum area efficiencies were yielded at PEs=256 ($256{\times}256$ image) and 4,096 ($768{\times}1,024$ and $1,024{\times}1,280$ images), respectively.

Detection of Subsurface Defects in Metal Materials Using Infrared Thermography; Image Processing and Finite Element Modeling

  • Ranjit, Shrestha;Kim, Won Tae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.2
    • /
    • pp.128-134
    • /
    • 2014
  • Infrared thermography is an emerging approach to non-contact, non-intrusive, and non-destructive inspection of various solid materials such as metals, composites, and semiconductors for industrial and research interests. In this study, data processing was applied to infrared thermography measurements to detect defects in metals that were widely used in industrial fields. When analyzing experimental data from infrared thermographic testing, raw images were often not appropriate. Thus, various data analysis methods were used at the pre-processing and processing levels in data processing programs for quantitative analysis of defect detection and characterization; these increased the infrared non-destructive testing capabilities since subtle defects signature became apparent. A 3D finite element simulation was performed to verify and analyze the data obtained from both the experiment and the image processing techniques.

Object-Oriented Models for Integrated Processing System of Finite Element Structural Analysis Program (유한요소 구조해석 프로그램의 전후처리 통합 운영 시스템을 위한 객체지향적 모델)

  • 서진국;송준엽;신영식;권영봉
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.10a
    • /
    • pp.17-24
    • /
    • 1994
  • The pre- and post-processor for finite element structural analysis considering the user-friendly device are developed by using GUI. These can be used on WINDOWS' environment which is realized the multi-tasking and the concurrency by object-oriented paradigm. They are designed to control integratedly the pre-processing, execution and the post-processing of the finite element structural analysis program on multiple windows. These object-oriented modeling approach can be used for complex integrated engineering systems.

  • PDF

Meshless Finite Element Analysis of Three-Dimensional Problems Using Fuzzy Knowledge Processing

  • 이준성
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.4
    • /
    • pp.1-7
    • /
    • 1998
  • This paper describes a meshless of element-free method based on fuzzy knowledge processing. To efficiently simulate complicated physical phenomena with dynmics and non-linear ploblem using computational mechanics, special method is required such as parallel processing or adaptive analysis techniques. However, the conventional finite element method is too complicated to be employed in the above cases. In order to reduce the above complexity of the conventional finite element analysis systms, the so called meshles finite elements as an input information have been stuided. Node is generated if its distance form existing node points is similar to the node spacing fuction at the point. The node spacing function is well controlled by the fuzzy knowledge processing Practical performances of the present system are demonstrated through several three-dimensional(3D) problems.

  • PDF

Sensitivity Analysis of Processing Parameters for the Laser Surface Hardening Treatment by Using the Finite Element Method (유한요소법을 이용한 레이저 표면경화처리 공정변수의 민감도 해석)

  • 이세환;양영수
    • Journal of Welding and Joining
    • /
    • v.19 no.2
    • /
    • pp.228-234
    • /
    • 2001
  • A methodology is developed and used to evaluate the response sensitivity of the thermal systems to variations in their design parameters. Technique for computing the sensitivity of temperature distributions to changes in processing parameters needed to decide the more effective laser input parameters for laser surface hardening treatment is considered. In this study, a state equation governing the heat flow in laser surface treatment is analyzed using a three-dimensional finite element method and sensitivity data of the processing parameter obtained using a direct differentiation method is applied to the sensitivity analysis. The interesting processing parameters are taken as the laser scan velocity and laser beam radius ( $r_{ b}$), and the sensitivities of the temperature T versus v and $r_{b}$ are analyzed. These sensitivity results are obtained with another parameters fixed. To verify the numerical analysis results, hardened layer dimensions (width and depth) of the numerical analysis are compared with the experimental ones.nes.

  • PDF

Numerical modelling and finite element analysis of stress wave propagation for ultrasonic pulse velocity testing of concrete

  • Yaman, Ismail Ozgur;Akbay, Zekai;Aktan, Haluk
    • Computers and Concrete
    • /
    • v.3 no.6
    • /
    • pp.423-437
    • /
    • 2006
  • Stress wave propagation through concrete is simulated by finite element analysis. The concrete medium is modeled as a homogeneous material with smeared properties to investigate and establish the suitable finite element analysis method (explicit versus implicit) and analysis parameters (element size, and solution time increment) also suitable for rigorous investigation. In the next step, finite element analysis model of the medium is developed using a digital image processing technique, which distinguishes the mortar and aggregate phases of concrete. The mortar and aggregate phase topologies are, then, directly mapped to the finite element mesh to form a heterogeneous concrete model. The heterogeneous concrete model is then used to simulate wave propagation. The veracity of the model is demonstrated by evaluating the intrinsic parameters of nondestructive ultrasonic pulse velocity testing of concrete. Quantitative relationships between aggregate size and testing frequency for nondestructive testing are presented.

Further Development of Vision-Based Strain Measurement Methods to Verify Finite Element Analyses

  • Kim, Hyung jong;Lee, Daeyong
    • Transactions of Materials Processing
    • /
    • v.5 no.4
    • /
    • pp.343-352
    • /
    • 1996
  • One of the preferred methods that can be used to verify the results of finite element analysis is to measure surface strains of the deformed part for purpose of direct comparison with simulation results. Instead of using the usual manual method the vision-based measurement method is capable of determining surface geometry and strain from the deformed grid pattern automatically with the help of a computer. To obtain strain distribution over an area, the coordinates of such a surface grid are determined from the multiple video images by applying the photogrammetry principle. Methods to improve the overall accuracy of the vision-based strain measurement system are explored and the possible accuracies that can be attained by such a measurement method are discussed. A major emphasis is placed on the initial grid application method its accuracy and ease of subsequent image processing. Finite element analyses of limiting dome height(LDH) test are carried out and the results of them are compared with exsperimen-tal data.

  • PDF

An Optimal Decomposition Algorithm for Convex Structuring Elements (볼록 구조자룰 위한 최적 분리 알고리듬)

  • 온승엽
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.9
    • /
    • pp.1167-1174
    • /
    • 1999
  • In this paper, we present a new technique for the local decomposition of convex structuring elements for morphological image processing. Local decomposition of a structuring element consists of local structuring elements, in which each structuring element consists of a subset of origin pixel and its eight neighbors. Generally, local decomposition of a structuring element reduces the amount of computation required for morphological operations with the structuring element. A unique feature of our approach is the use of linear integer programming technique to determine optimal local decomposition that guarantees the minimal amount of computation. We defined a digital convex polygon, which, in turn, is defined as a convex structuring element, and formulated the necessary and sufficient conditions to decompose a digital convex polygon into a set of basis digital convex polygons. We used a set of linear equations to represent the relationships between the edges and the positions of the original convex polygon, and those of the basis convex polygons. Further. a cost function was used represent the total processing time required for computation of dilation/erosion with the structuring elements in a decomposition. Then integer linear programming was used to seek an optimal local decomposition, that satisfies the linear equations and simultaneously minimize the cost function.

  • PDF