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An Optimal Decomposition Algorithm for
Convex Structuring Elements

(Syng-Yup Ohn)

Abstract - In this paper, we present a new technique for the local decomposition of convex structuring elements for
morphological image processing. Local decomposition of a structuring element consists of local structuring elements, in
which each structuring element consists of a subset of origin pixel and its eight neighbors. Generally, local
decomposition of a structuring element reduces the amount of computation required for morphological operations with the
structuring element. A unique feature of our approach is the use of linear integer programming technique to determine
optimal local decomposition that guarantees the minimal amount of computation. We defined a digital convex polygon,
which, in turn, is defined as a convex structuring element, and formulated the necessary and sufficient conditions to
decompose a digital convex polygon into a set of basis digital convex polygons. We used a set of linear equations to
represent the relationships between the edges and the positions of the original convex polygon, and those of the basis
convex polygons. Further, a cost function was used to represent the total processing time required for computation of
dilation/erosion with the structuring elements in a decomposition. Then integer linear programming was used to seek an
optimal local decomposition, that satisfies the linear equations and simultaneously minimize the cost function.

Key Words : Morphological image processing, Structuring element, Decomposition, Integer linear programming

1. Introduction dilation and erosion operations in chained sequences.
It’s often inefficient to use a large structuring element
Mathematical morphology is a powerful tool for image when an input image has a large amount of data. Also,
processing and computer vision [1], (2], [3], [4], [5) some parallel architectures can only compute with
Morphological image processing is based on the following structuring elements that fit inside a 3X3 window
two basic operations called dilation and erosion. In the centered on the origin. Therefore, it is desirable to
below, A and B are subsets of EN, where EY is the decompose a large structuring element into a sequence of

N-dimensional Euclidean or digital space. dilations of smaller structuring elements. By the chain

rule for dilations [2], if a structuring element B is

Dilation:
decomposed into B, Bs, ..., B,, ie.
A® B ={a+blacsA, b=sB} n
B=B®B®... B, 3)
Erosion:
then the dilation of A by B can be computed by the
AOB={clctbe A for every bcB} (2) sequence of dilations as

(((ADB)DB) D ...) DB, (4)

In the above, A generally represents an image and B
is called a structuring element. Different image processing
operations could be achieved by choosing structuring instead of a single dilation by the original structuring

elements of appropriate sizes and shapes, and putting the element. Generally, the amount of computation for the
sequence of dilations as in (4) is less than that for a

- . single dilation operation as APB. Similarly, the erosion
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of A by B can be computed by

(A B)OB) S ..) ©B, (5)
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Since an erosion operation is defined as the dual
operation of a dilation operation, the decomposition for an
erosion operation can be similarly obtained like the
decomposition for dilation operations, and we will omit
the discussion on erosion operation.

Haralick and Zhuang first proposed: methods for
decomposition of structuring elements {6]. They developed
algorithms for two-point decomposition of structuring
elements for Image Flow machine. Since then, many
researchers have developed algorithms and techniques for
the local decomposition of convex shaped structuring
elements for parallel image processing architectures. The
local decomposition consists of the set of local structuring
elements, which can be contained in 3X3 local window
centered on the origin. Xu [7] reported an algorithm to
get an optimal decomposition for Cytocomputer [8]. Park
[9] reported an algorithm to find an optimal decomposition
for four-connected MPP type machines. Kanungo [10]
proved that there exists a linear transformation between
13 primal basis digital convex polygons and the 8 edges
of an input digital convex polygon. However, general
methods for finding optimal decompositions for different
types of pipelined or parallel processing architectures are
yet to be found. In this paper, we present such a method.
The method is based on the Shephard’s theorem [11],
[12] for the decomposition of Euclidean convex polytopes.
We derived a set of linear constraints on the length of
edges of digital convex polygons or convex structuring
elements in digital space. This set of linear constraints
will serve as the necessary and sufficient conditions to
decompose a digital convex polygon into a set of basis
digital convex polygons. We define a cost function that
represents the total processing time or the cost to
execute morphological operations with a set of basis
structuring elements. The decomposition problem is
formulated as an integer programming problem where we
seek to minimize the cost (or objective) function, given
the set of linear constraints. Our method resuits in an
optimal decomposition with respect to the cost function,
which in turn, represents the execution time. For different
computing environments and algorithms, different cost
could be defined,
morphological operations are executed on the environment.

functions depending on how

This paper is organized as follows. In Section 2, we
show how morphological operations are implemented. In
Section 3, we derive the necessary and sufficient
conditions to decompose a digital convex polygon into a
set of basis digital convex polygons. Section 4 presents a
new technique to find an optimal local decomposition of a
convex structuring element. Finally, Section 5 gives our

conclusion.
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2. Implementation Algorithm of
Morphological Operations

On a plain von Neumann type computer which has a
CPU and a main memory, dilation of input image A by
structuring element B can be implemented as follows. In

the following, each of A, B, and C is the set of the
coordinates of all the foreground pixels in input image,
structuring element, and output image.

Dilation Algorithm :

Let C=0.
For each (a,a,) € A
for each (b,b,) € B

put (a,a,)+(b,b,) into set C.

The complexity of the above algorithm depends on the
number of addition operations The number of addition

required for dilation of input image A by structuring
element B is mmn, in which m and #n is the number of

foreground pixels in A and B.
Erosion Algorithm

Let C=0.
For each (a,a,) € A
it (a,a,)+(b.b,) € A for every (b,b,) € B,

put (a.a,) into set C

Similarly, the number of addition operations required for
erosion of input image A by structuring element B is
mn. Since the input image is predetermined, the amount
of computation required for executing dilation or erosion
is proportional to the number of foreground pixels in

structuring element .
3. Decomposition of Digital Convex Polygons
3.1 Digital Convex Polygons

In our method, a digital convex polygon is represented
using its boundary chain codes[17]. See Figure 1 for the
different chain code directions. In the following, a digital
point denotes a point in 2-dimensional digital space Vil
where the x and v coordinates of each point in Z% have
an integer value.
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Fig. 1 Chain codes directions

Definition 1: The set of digital points A is a digital
convex polygon (DCPG) if the boundary of A can be
represented as a chain code in the form of
09 1 22 39 4 5% 6% 79 and it has no hole inside.

See Figure 2 for an example DCPG P. The chain code
representation of the boundary of P is
07 1525 3% 4% 5% 6% 71 starting with points.

Definition 2@ Suppose the boundary of DCPG A is
represented as chain code
0919 2% 3% 4% 5% 6% 77, The length of the i th
edge of DCPG A, denoted as (A, i), can be defined as

the chain code length ¢, in the chain code sequence.

sequence

Note that the chain code length of an edge is different
from the geometric length of the edge. the latter can be
obtained by multiplying the former by V2 if the edge
directions are diagonal, and remains the same if the edge
directions are vertical or horizontal.
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Fig. 2 An example digital convex polygon(DCPQG).
Arrows indicate 8 edges of the DCPG
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Fig. 3 Examples of 2d DCPGs and their
boundaries

A non-singleton DCPG is classified according to its
shape as follows.
Definition 3: A DCPG P is of type NW if

e(P,1) = e(P,5)>0, (6)
and, for ¢ =0,2 3, 4, 6, 7,
e(Pi) = 0. )
Definition 4© A DCPG P is of type NE if
e(P,3) = e(P,1)>0, (8)
and, for 7 =0, 1, 2, 4, 5, 6,
e(P,i) = 0. (9)
Definition 5. A non-singleton DCPG P is type OT if
P is neither of type NW or NE.
See Figure 3 for examples of type NW, NE, and OT
DCPGs.
A type NW or type NE DCPG is an 8-connected

image, and a type OT DCPG is a 4-connected image. We
also define a special class of DCPGs as follows.

Definition 6. A non-singleton DCPG P is said to be
rhombus~-shaped if

e(P,1) = &(P,5)>0 (10)
«P,3) = (P, T)>0"
and, for 7 =0, 2, 4, 6,
e(P,i) = 0. (11)
1169
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See Fig. 4 for an example of rhombus-shaped DCPG.
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Fig. 4 An example of rhombus-shaped DCPG and its
boundaries

3.2 Decomposition of DCPG

Definition 7: Two sets of points A and B are said to
be shape—equivalent and denoted as A=B if A=B, for

a proper vector f, where B, represents the translation of

B by vector 1

The following proposition represents the relationships
between the edges of original DCPG and decomposed
DCPGs. We avoid rigorous proofs of propositions in this
paper and show illustrative examples instead. Refer [20]
for proofs of propositions.

Proposition 1: Suppose P, @, and R are DCPGs. If

P=Q+ R, (12)
then
e(P,i) = Qi)+ e(R, 1) (13)

for =0, .,7

Figure 5 shows an illustrative example of Proposition 1.
In Figure 5, e(Q,1)+e(R, i) = e(P,i) for i =0, ., 7
and P=Q+ R.

The converse of Proposition 1 is true with an
exceptional case. In case that P is rhombus shaped,
Equation (13) can be satisfied by € and R of which
either one is type NE and the other is type NW. But, the
dilation of a type NE and a type NW DCPG results a
rhombic checker board image as in Figure 6. Thus, we
exclude the exceptional case in the converse of
Proposition 1 shown in Proposition 2.
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Proposition 2: Suppose P is not rhombus-shaped. If

eP,i) = Qi)+ e(R,i) 14)

for =0, .., 7, then

P=Q+R. (15)

In the exceptional case that P is rhombus-shaped, the

converse of Proposition 2 is true when one of @ and R
are type OT. The converse in the exceptional case is
presented in Proposition 3.

Proposition 3- Suppose P is rhombus-shaped. If

P i) = QD)+ e(R, 1) (16)

for 1 =0, .., 7 and either one of @ or R is type OT,
then

P=@Q+R. an

Proposition 1, 2, and 3 serve as the necessary and
sufficient condition for a DCPG to be decomposed into
two DCPGs. When P is a non rhombus-shaped DCPG,
the set of all the pairs of @ and R which satisfy the
condition in Proposition 2 contains only and all the
possible decomposition of DCPG P. Similarly, when P is
a rhombus-shaped DCPG, the set of all the pairs of @
and R which satisfy the condition in Proposition 3
contains only and all the possible decomposition of DCPG
P.
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Fig. 5 llustration of Proposition 1 and 2
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ig. 6 Dilation of a type NE and a NW DCPGs. Q®R=F




Dilation of any two DCPG, except the case in which
one is type NW and the other is type NE, results a
DCPG. Thus, from Proposition 1 and 2, the decomposition
condition can be extended to a linear combination form as
shown in Proposition 4.

Proposition 4: Suppose P and @, where k=1, .., #,
are DCPGs and P is not rhombus-shaped, then

P = alQI@-.. @QnQn (18

if and only if, for 7 = 0, ..., 7,

e(P,i)

Il

glak e(Qy, 1) . (19)

Similarly, from Proposition 1 and 2, we have
Proposition 5.
Proposition 5. Suppose P and @, where £ =1, .., =n,

are DCPGs and P is rhombus-shaped.
P=a0,®D... DaQ, (20)

if and only if, for ¢z = 0, ..., 7,

e Pi) = glake(th) , (21)
and
Sor> 0, (22)
where Sor = g; 3
Qu is type OT,

Propositions 4 and 5 provide the necessary and
sufficient condition for a DCPG P to be decomposed into
a;@s, ...
Given a non rhombus-shaped DCPG P and the set of
basis DCPGs {@, ..., Q,}, if the solution

, 2,Q,5 by considering the shape of a DCPG.

n-tuple
(ay,...,a,) satisfies (19), then
2@ D... Da,Q, s
Furthermore, if any composition of alQl®...€Bay,Qn is

composition

shape-equivalent to P.

shape-equivalent to P, then the #xn-tuple (ay,...,a,)

satisfies (19). Thus, the solution n-tuple space for (19)
contains all and only #n-tuples (aj,...,a,) such that
P and ¢,Q,D...Da,Q, are shape-equivalent. In case

of rhombus-shaped DCPG P, similar discussion applies
for Equation (21) and (22).

25 PEXE Y8 2% 22 ¥nalE
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3.3 Position of DCPG in Decomposition

So far we haven’t considered the positions of the
DCPGs. In this section, we discuss the relationship
between the positions of the DCPGs. In the following,

min ,(A) denotes the minimum x coordinate of the

A. Similarly,

min ,(A) denotes the minimum y coordinate.

region occupied by the set of points

Proposition 6: Suppose A, B, and C are sets of
points in Z2. If

C=APB, (23)

then

min ,(C) = min ,(A) + min (B)

min ,(C) = min ,(A) + min (B) @

Also, Proposition 6 can be extended to a linear
combination form.

Proposition 7. Suppose P and Q;s, where k£ =1, ..

’

n, are sets of points in Z°. If

P=0Q,P.. Pa,0Q,, (25)

then

min (P) = glak min ,.(Q,) . 26)
min y(P) = glak min ,( Q,)

From Propositions 4, 5 and 7, the necessary and
sufficient conditions for a DCPG P to be decomposed
into 1@, ...,a,Q, are as follows:

D1) For ¢ =0, .., 7,
(P, i) = glakee(Qk,i) . @

D.2) Only in the case that P is rhombus shaped,

Sor>0, (28)
where Sor = 21 Qr
Qy is type OT.
17
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D.3)

min ,(P) = Z, a,min (Qy) (29)
min y(P) = g] a,min y( Qh)

Conditions D.1 and D.2 consider shape only. If the two
conditions are satisfied, P and ,Q,D...Da,Q, are
shape-equivalent. If condition D.3 is satisfied in addition
to conditions D.1 and D2, P and 4, ®P...Pa,Q, are
located at the same position. Since D.1, D.2, and D.3 are
the necessary and sufficient conditions, the space of

solution #n-tuples of (a;,...,a, for conditions DI,

D2, and D.3 contain all and only #n-tuple (a,,...,a,)

such that @,Q,, ..., a,®@, is the decomposition of P.
4. Optimal Local Decomposition of Convex
Structuring Elements

In this section, we develop a technique to find the
optimal decomposition of a convex structuring element
into a set of local convex structuring elements using the
decomposition conditions we developed in Section 3. A
structuring element is said to be convex if it forms a
DCPG. If a convex structuring element can be contained
in a 3%3 window centered on the origin, then it is called
a local convex structuring element, or a local basis in
short.

4.1 Local Decomposition of a Convex Structuring
Element

The set of all local basis contains 117 elements, and
the elements are denoted as Ly, ...,L;s Figure 9
shows some example local basis. Given a convex
structuring element P, the solution space of n-tuples
(agy, ...,ays) satisfying decomposition conditions D.1,

D.2, and D.3 is the set of all local basis such that
P —_—doLo@... ®01]6L|]6 . (30)

The solution space thus obtained represents only and

all the feasible local decompositions of P.

4.2 Cost Function
Suppose ¢, where k = 1, .., =, is the cost or time to

compute the dilation of an image by structuring element

Q.. Then, the total cost or time to compute the sequence

172

of dilation operations by a;@,...,a,Q, can be

represented by the cost function

glakck . (31)

If we implement dilation operation as presented in
Section 2, the amount of computation required for
executing dilation operation by a structuring element is
proportional to the number of foreground pixels in the
structuring element. Thus, the cost function for the
sequence of dilation operations by local structuring

elements 2,@,, ..., a,Q, is then

gl a, b, (32)

where p, is the number of foreground pixels in

structuring element @,;.

43 Finding the solution =n-tuple
Given a structuring element P, the optimal local

decomposition of P determined as
agLo @ e @a“ﬁL“G R (33)

where the #-tuple (ag, ..., ay) minimizes the cost

function, and at the same time satisfying the
decomposition conditions D.1, D.2, and D.3 in Section 3.
We use linear integer programming technique [18], {19] to
find the optimal solution #-tuple. The set of constraints
used in linear integer programming is the set of linear
integer equations generated from the decomposition
conditions D.1, D.2, and D.3 by using the set of all local
basis. The objective function to be minimized is the cost
function obtained by using the set of all local basis. By
giving different cost functions, optimal decompositions for
different computing environments and implementation
algorithms can be obtained.

4 4 Decomposition Examples

Table 1 shows the optimal local decompositions of
example convex structuring elements in Figure 7. Figure
8 graphically depicts the local bases that appear in the
local optimal decomposition in Table 1. In Table 2, we
compare the cost for performing dilation by the original
example convex structuring elements and the cost for
performing dilation by the sequences of decomposed
structuring elements shown in Table 1. The cost for
performing dilation represents the number of addition




operations required for executing dilation, which in turn,
is the number of elements in the structuring elements
involved in dilation. In case of dilation by an original
structuring element, the number of addition operations is
the number of the elements in the original structuring
element. In case of dilation by the decomposed sequence
resulted from optimal local decomposition, the number of
addition operations is the number of the elements in all
the bases contained in the decomposed sequence. The
simulation shows more reduction in the amount of
computation when using optimal local decomposition for
larger structuring elements.
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Fig. 7 Examples of convex structuring elements

5. Conclusion

In this paper, we formulated a general framework to
find an optimal local decomposition of structuring
elements. Optimal criteria for decomposition vary widely
depending on how the dilation operation is implemented.
We introduced the use of linear integer programming
technique to solve the decomposition problem, using the
length of the digital convex polygon edges and their
positions as linear constraints. By choosing different cost
functions as the object function for the integer
programming, our method is flexible in the choice a
variety of optimality criteria for different computing
environments and implementation algorithms. Also, we
show that the optimal local decomposition results in a
great reduction in amounts of computing for dilation
operations.

BE I=XE 9% 2 22 gDels
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Fig. 8 Local bases that appear in the optimal local
decomposition of the convex structuring elements
in Figure 7.

Table 1 Decomposition results

Example DCPG Optimal Local Decomposition

P Los®2L3® Loy P2LeD2L s
P, Li®Lx®LisB2Ls
Ps 2LiB4Ly) D LxD Los

Table 2 Comparison of the numbers of addition
operations per each pixel in input image required
for dilation by the original structuring element and
by the decomposed sequence.

Example DCPG Original Decomposed Sequence
P 66 25
P, 29 15
P 39 18
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