• Title/Summary/Keyword: Processed ginseng

Search Result 160, Processing Time 0.022 seconds

Protective effect of ultrasonication-processed ginseng berry extract on the D-galactosamine/lipopolysaccharide-induced liver injury model in rats

  • Nam, Yoonjin;Bae, Jinhyung;Jeong, Ji Hoon;Ko, Sung Kwon;Sohn, Uy Dong
    • Journal of Ginseng Research
    • /
    • v.42 no.4
    • /
    • pp.540-548
    • /
    • 2018
  • Background: Acute hepatic failure is a life-threatening critical condition associated with rapid deterioration of liver function and liver transplantation. Several studies have shown that Panax ginseng Mayer has antidiabetic and hepatoprotective effects. However, the hepatoprotective effect of ginseng berry is still unveiled. In this study, we evaluated the hepatoprotective effects of ultrasonication-processed ginseng berry extract (UGBE) on acute hepatic failure model in rats. Methods: Ginseng berry extract (GBE) was ultrasonically processed. The GBE, silymarin, and UGBE were orally administered to male Sprague-Dawley rats for 4 wk. Twenty-four h after the last administration, rats were challenged with D-galactosamine (D-GalN)/lipopolysaccharide (LPS). Results: After ultrasonication, the component ratio of ginsenosides Rg2, Rg3, Rh1, Rh4, Rk1, Rk3, and F4 in GBE had been elevated. Administration of UGBE significantly increased the survival rate of D-GalN/LPS-challenged rats. Pretreatment with UGBE significantly decreased serum alanine aminotransferase, aspartate aminotransferase, and total bilirubin levels in D-GalN/LPS-challenged rats in a dose-dependent manner. The levels of enzymatic markers for oxidative stress (superoxide dismutase, glutathione peroxidase, catalase, and glutathione) were increased by UGBE treatment in a dose-dependent manner. Tumor necrosis factor alphalevel, inducible nitric oxide synthase activities, and nitric oxide productions were reduced by UGBE treatment. In addition, hemeoxygenase-1 levels in liver were also significantly increased in the UGBE-treated group. The protein expression of toll-like receptor 4 was decreased by UGBE administration. Hematoxylin and eosin staining results also supported the results of this study showing normal appearance of liver histopathology in the UGBE-treated group. Conclusion: UGBE showed a great hepatoprotective effect on D-GalN/LPS-challenged rats via the toll-like receptor 4 signaling pathway.

Changes of Ginsenosides and Color from Black Ginsengs Prepared by Steaming-Drying Cycles (흑삼 제조과정 중 증포 횟수에 따른 색상 및 진세노사이드 함량 변화)

  • Nam, Ki-Yeul;Lee, Nu-Ri;Moon, Byung-Doo;Song, Gyu-Yong;Shin, Ho-Sang;Choi, Jae-Eul
    • Korean Journal of Medicinal Crop Science
    • /
    • v.20 no.1
    • /
    • pp.27-35
    • /
    • 2012
  • This study was conducted to investigate changes in composition of ginsenosides and color of processed ginsengs prepared by different steaming-drying times. Processed ginsengs were prepared from white ginseng with skin by 9-time repeated steaming at $96^{\circ}C$ for 3 hours and followed by hot air-drying at $50^{\circ}C$ for 24 hours. As the times of steaming processes increased, lightness (L value) decreased and redness (a value) increased in color of ginseng powders. Crude saponin contents and ginsenosides compositions in processed ginsengs prepared by different steaming-drying times were investigated using the HPLC method, respecively. Crude saponin contents according to increasing steaming-drying times decreased in some degree. In the case of major ginsenosides, the contents of $Rb_1$, $Rb_2$, Rc, Rd, Rf, Re, $RG_1$, Re were decreased with increase in steamimg times, but those of $Rh_1$, $Rg_3$, $Rk_1$ were increased after especially 3 times of steaming processes. Interestingly, in black ginseng were prepared by 9 times steaming processes, the content of ginsenoside $Rg_3$ was 8.20 mg/g, approximately 18 times higher than that (0.46 mg/g) in red ginseng. In addition, the ratio of the protopanaxadiol group and protopanaxatiol group (PD/PT) were increased from 1.9 to 8.4 due to increasing times of steamming process.

Quality of Raw Ginseng and Quality Control of Ginseng Products (원료삼품질과 제품의 품질관리)

  • Park, Hoon
    • Journal of Ginseng Research
    • /
    • v.15 no.3
    • /
    • pp.224-230
    • /
    • 1991
  • The seven traditional quality factors including age and root weight ect. were reviewed in relation to the chemical components as a new quality factor and pharmacological data. The other important factor, production place, appeared to be sum of the eight factors. The important of production place indicated that the best quality ginseng is produced in the optimum environment. The description of ginseng for medicinal use in present materia medica missed most traditional quality factors only indicating the change by processing. Such phenomena do not mean the significant of raw$.$ ginseng quality. since appropriate raw ginseng was supplied in traditional way. For the generation with analytical attitude the description of raw ginseng quality to the processed ginseng products is recommendable. For the quality control with biologically active or index compound, the composition of various compounds seems to be the best. The establishment of physical and chemical quality creteria that will match with the traditional mothod it needed and will accomplished by comparative research on raw ginseng from various production sites and growth conditions. The description of production-place, grade and quantity of raw ginseng to the processed products will give better information and higher popularity of products to consumers.

  • PDF

Current Status of Korean Ginseng Products and Trends in Enhanced Functional Ginseng Products

  • Byungdae Lee;Tae-Eun Kwon;Hoon-Il Oh;Ho-jung Yoon
    • Journal of Ginseng Culture
    • /
    • v.6
    • /
    • pp.13-34
    • /
    • 2024
  • The abolishment of the red ginseng monopoly act by the Korean government in 1996 resulted in a drastic change in the Korean ginseng industry, leading to a significant increase in the market size and consumption of ginseng products. Red ginseng is most popular type, with approximately 74% of harvested fresh ginseng being processed into various red ginseng products. Since 1997, there has been a substantial increase in the cultivation of ginseng for production of red ginseng, which, in turn, has contributed to the proliferation of ginseng processing companies. To investigate the products of ginseng manufacturing businesses, we select 200 companies primarily engaged in ginseng processing or specializing solely in ginseng. Our survey on the status of ginseng industry covered 8 different categories. 1) Root ginseng: There were 66 companies involved in manufacturing red ginseng root, accounting for 33.0% of all surveyed companies. This was followed by black ginseng root with 36 companies (18.0%) and red ginseng fine roots with 22 companies (11%). 2) Red ginseng products: A total of 144 companies were involved in manufacturing red ginseng pouches, making it the most common product category. This was closely followed by 142 companies producing pure(100%) red ginseng extract concentrate. 3) Fermented red ginseng products: Companies producing fermented red ginseng extract concentrate products were the most numerous, totaling 26. Following this, companies producing fermented red ginseng stick and pouch products were next in line. 4) Ginseng products: There were 15 companies involved in the production of ginseng products, with the majority focusing on ginseng tea. 5) Black ginseng products: Companies producing black ginseng extract concentrate were the most numerous, with 31 companies, followed by 26 companies producing black ginseng extract pouches. 6) Taegeuk ginseng products: Only 5 companies were involved in the production of taegeuk ginseng products. 7) Fermented black ginseng, and 8) Ginseng berry products: These categories are manufactured by less than 5 companies each. However, the variety in ginseng berry products suggests the potential for future growth. In the 2000s, a trend emerged with the development of new processed products aimed at enhancing the functional components of red ginseng, and these products have captured the attention of consumers. However, this study primarily focuses on black ginseng, fermented red ginseng/fermented black ginseng, and ginseng berry products as they have exerted a significant influence on the overall ginseng industry.

Anti-Diabetic Effect of Pectinase-Processed Ginseng Radix (GINST) in High Fat Diet-Fed ICR Mice

  • Yuan, Hai Dan;Quan, Hai Yan;Jung, Mi-Song;Kim, Su-Jung;Huang, Bo;Kim, Do-Yeon;Chung, Sung-Hyun
    • Journal of Ginseng Research
    • /
    • v.35 no.3
    • /
    • pp.308-314
    • /
    • 2011
  • In the present study, we investigate anti-diabetic effect of pectinase-processed ginseng radix (GINST) in high fat diet-fed ICR mice. The ICR mice were divided into three groups: regular diet group, high fat diet control group (HFD), and GINSTtreated group. To induce hyperglycemia, mice were fed a high fat diet for 10 weeks, and mice were administered with 300 mg/kg of GINST once a day for 5 weeks. Oral glucose tolerance test revealed that GINST improved glucose tolerance after glucose challenge. Compared to the HFD control group, fasting blood glucose and insulin levels were decreased by 57.8% (p<0.05) and 30.9% (p<0.01) in GINST-treated group, respectively. With decreased plasma glucose and insulin levels, the insulin resistance index of the GINST-treated group was reduced by 68.1% (p<0.01) compared to the HFD control group. Pancreas of GINST-treated mice preserved a morphological integrity of islets and consequently having more insulin contents. In addition, GINST up-regulated the levels of phosphorylated AMP-activated protein kinase (AMPK) and its target molecule, glucose transporter 4 (GLUT4) protein expression in the skeletal muscle. Our results suggest that GINST ameliorates a hyperglycemia through activation of AMPK/GLUT4 signaling pathway, and has a therapeutic potential for type 2 diabetes.

Changes in Ginsenosides Composition of Ginseng Leaf and Stem after an Ultrasonication Process (초음파 처리에 의한 인삼 잎과 줄기의 진세노사이드 성분 변화)

  • Nam, Yun Min;Shin, Ho June;Yang, Byung Wook;Park, Jong Dae;Cho, Soon Hyun;Kim, Hyoung Chun;Ko, Sung Kwon
    • Korean Journal of Pharmacognosy
    • /
    • v.47 no.4
    • /
    • pp.352-359
    • /
    • 2016
  • The purpose of this study is to develop a new preparation process of ginseng leaf and stem extracts having high concentrations of ginsenoside Rg2, Rg3, Rg5, Rh1, a special component of red and black ginseng. Chemical transformation from ginseng saponin glycosides to prosapogenin was analyzed by the HPLC. Extracts of ginseng (Panax ginseng) leaf and stem were processed under several treatment conditions including ultrasonication treatments. The content of total saponin reached their heights at 17 hr (UGL-17) of ultrasonication treatment, followed by 16 hr (UGL-16) and 7 hr (UGL-7) of ultrasonication treatment at $100^{\circ}C$. UGL-17 findings show that the ginseng leaf and stem that had been processed with ultrasonication for 17 hours peaked in the level of Rg2, Rg3 and Rh1. In addition, UGL-16 contained ginsenoside Rg5 at high concentrations. It is thought that such results provide basic information in preparing ginseng leaf and stem extracts with functionality enhanced.

Qualitative and quantitative analysis of furosine in fresh and processed ginsengs

  • Li, Yali;Liu, Xiaoxu;Meng, Lulu;Wang, Yingping
    • Journal of Ginseng Research
    • /
    • v.42 no.1
    • /
    • pp.21-26
    • /
    • 2018
  • Background: Furosine (${\varepsilon}$-N-2-furoylmethyl-L-lysine, FML) is an amino acid derivative, which is considered to be an important indicator of the extent of damage (deteriorating the quality of amino acid and proteins due to a blockage of lysine and a decrease in the digestibility of proteins) during the early stages of the Maillard reaction. In addition, FML has been proven to be harmful because it is closely related to a variety of diseases such as diabetes. The qualitative analysis of FML in fresh and processed ginsengs was confirmed using HPLC-MS. Methods: An ion-pair reversed-phase LC method was used for the quantitative analysis of FML in various ginseng samples. Results: The contents of FML in the ginseng samples were 3.35-42.28 g/kg protein. The lowest value was observed in the freshly collected ginseng samples, and the highest value was found in the black ginseng concentrate. Heat treatment and honey addition significantly increased the FML content from 3.35 g/kg protein to 42.28 g/kg protein. Conclusion: These results indicate that FML is a promising indicator to estimate the heat treatment degree and honey addition level during the manufacture of ginseng products. The FML content is also an important parameter to identity the quality of ginseng products. In addition, the generation and regulation of potentially harmful Maillard reaction products-FML in ginseng processing was also investigated, providing a solid theoretical foundation and valuable reference for safe ginseng processing.

The Mass Balance of Protopanaxtriol Ginsenosides in Red Ginseng Process (홍삼제조과정 중 파낙사트리올계 진세노사이드의 물질균형)

  • Lee, Sang Myung
    • Korean Journal of Pharmacognosy
    • /
    • v.46 no.3
    • /
    • pp.223-228
    • /
    • 2015
  • This mass balance study about ginsenoside Rg1 and Re in Red ginseng processed from Fresh ginseng is useful to understand that herbal material sources of ginseng and raw material consumption in Red ginseng preparations. In our results, total molar amounts of ginsenoside Rg1, Re and their converts in Fresh ginseng, Red ginseng, and Red ginseng extract are substantially the same. The molar amounts of ginsenoside Rg1, Re (4.324, 2.880 μmol/g) as starting materials in Fresh ginseng are kept constant as total molar amounts (sum of starting and converts) in Red ginseng (4.264, 2.596 μmol/g) and Red ginseng extract (3.389, 3.129 μmol/g). This result means that protopanaxtriol type ginsenosides and their characteristic converts are not destroyed or inflowing in Red ginseng process. Therefore, it is important for quality assurance of Red ginseng preparations that the ratio between ginsenosides Rg1, Re and these converts is kept constant.