• Title/Summary/Keyword: ProcessInduced Deformation

Search Result 141, Processing Time 0.023 seconds

Evaluation of HIC Resistance for Thick-wall Welded Pipe (후육 용접 강관의 HIC 저항성 평가)

  • Seo Jun Seok;Kim Hee Jin;Ryoo Hoi-Soo
    • Journal of Welding and Joining
    • /
    • v.23 no.3
    • /
    • pp.34-39
    • /
    • 2005
  • It is required for the steel materials used in the sour environment to have sufficient resistance to hydrogen induced cracking(HIC). For line pipe steels, HIC resistance could be varied during pipe making process due to the large plastic deformation applied in the thick-wall pipe. In order to figure out such effect, HIC tests were performed not only in the plate condition but in the pipe condition and their results were compared in terms of cracking ratio. Test results demonstrated a detrimental effect of plastic deformation to HIC resulting in a substantial increase in the cracking ratio after pipe forming process. All of the cracks found in the pipe material were located in the outer layer of pipe where the tensile strain was resulted during pipe forming stage. In order to understand the HIC resistance of the pipe but in the plate condition, it was suggested to pre-strain the plate to some extent before the HIC test.

Thermal Deformation of Carbon Fiber Reinforced Composite by Cure Shrinkage (탄소섬유강화 복합재료 성형시 화학수축에 의한 변형연구)

  • Choi, Eun-Seong;Kim, Wie-Dae
    • Composites Research
    • /
    • v.31 no.6
    • /
    • pp.404-411
    • /
    • 2018
  • As the autoclave process progresses in a given cure cycle, residual stress in the composite product is induced by cure shrinkage of the resin. As a result, It generates the thermal deformation such as spring-in and warpage, and the inaccuracy of the final product increases. It is important to predict thermal deformation in aerospace parts which require precise fabrication. The research has been done on predicting and grasping curing process of composite material. In this study, the cure mechanism of composite materials according to the process is predicted through finite element analysis, and the effect of cure shrinkage on thermal deformation generated by the process is analyzed.

Deformation Characteristics of Intermittent Fillet Welding (단속 필렛 용접의 변형 특성에 관한 연구)

  • Lee, Joo-Sung
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.105-109
    • /
    • 2011
  • As is well appreciated, welding is the most important fundamental process in manufacturing marine structures. However, weld-induced deformation is inevitable because of the non-uniform distribution of temperature during welding. The deformation caused by welding is one of the principal obstacles in enhancing the productivity in the manufacturing procedure for marine structures. This should be much more seriously considered in the case of the thin blocks found in a ship with multi-deck structures. This paper is concerned with the deformation control of thin panel blocks by applying intermittent welding to fillet welding. In order to investigate the quantitative effect of the intermittent welding, a thermo elasto-plastic analysis was carried out with various welding pitches and plate thicknesses. Welding tests were also carried out to show the validity of the present thermo-elasto-plastic analysis. Numerical analysis results showed good agreement with those of the welding tests. As far as the present numerical results are concerned, it has been seen that a more than 50% reduction in angular distortion can be achieved by applying the intermittent welding because of the low heat input.

Beam finite element model of a vibrate wind blade in large elastic deformation

  • Hamdi, Hedi;Farah, Khaled
    • Wind and Structures
    • /
    • v.26 no.1
    • /
    • pp.25-34
    • /
    • 2018
  • This paper presents a beam finite element model of a vibrate wind blade in large elastic deformation subjected to the aerodynamic, centrifugal, gyroscopic and gravity loads. The gyroscopic loads applied to the blade are induced by her simultaneous vibration and rotation. The proposed beam finite element model is based on a simplex interpolation method and it is mainly intended to the numerical analysis of wind blades vibration in large elastic deformation. For this purpose, the theory of the sheared beams and the finite element method are combined to develop the algebraic equations system governing the three-dimensional motion of blade vibration. The applicability of the theoretical approach is elucidated through an original case study. Also, the static deformation of the used wind blade is assessed by appropriate software using a solid finite element model in order to show the effectiveness of the obtained results. To simulate the nonlinear dynamic response of wind blade, the predictor-corrector Newmark scheme is applied and the stability of numerical process is approved during a large time of blade functioning. Finally, the influence of the modified geometrical stiffness on the amplitudes and frequencies of the wind blade vibration induced by the sinusoidal excitation of gravity is analyzed.

Prediction of Process-Induced Spring-Back of CFRP Composite Structure Using Deep Neural Network (심층신경망을 이용한 CFRP 복합재 구조의 공정 유도 스프링백 예측)

  • Yuseon Lee;Dong-Hyeop Kim;Sang-Woo Kim;Soo-Yong Lee
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.5
    • /
    • pp.73-80
    • /
    • 2024
  • A deep neural network (DNN) was employed to predict the spring-back of a CFRP composite spar induced by the curing process. A total of 816 spring-back data points, derived from varying stacking angles, layer counts, and flange radii, were generated through finite element method (FEM)-based curing analysis to train the DNN model. The trained model demonstrated an R-squared value of 0.99 and a mean squared error of 0.00093, indicating excellent performance. For untrained flange radii, the spring-back predicted by the DNN exhibited a mean relative error of 2.18% when compared to FEM results. Additionally, while FEM analysis required approximately 20 minutes, the DNN-based prediction required only about 14 milliseconds. These results highlight the potential of using DNNs for the rapid prediction of process-induced deformation in CFRP composites.

Study of Damage in Germanium Optical Window Irradiated by a Near-infrared Continuous Wave Laser (근적외선 연속발진 레이저 조사에 의한 게르마늄 광학창 손상 연구)

  • Lee, Kwang Hyun;Shin, Wan-Soon;Kang, Eung-Cheol
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.82-89
    • /
    • 2014
  • The damage in germanium (Ge) optical window irradiated by a near-infrared continuous wave (CW) laser was studied. Laser-induced heating and melting process were surveyed, and the specific laser power and the irradiance time to melt were estimated by numerical simulation. The experiments were also carried out to investigate the macro and micro structure change on Ge window. Results showed that the surface deformation was formed by melting and resolidification process, the damaged surface had a polycrystalline phase, and the transmittance as an optical performance factor in mid-infrared region was decreased. We confirmed that an abnormal polycrystalline phase and surface deformation effect such as hillock formation and roughness increase reduced the transmittance of Ge window and were the damage mechanism of CW laser induced damage on Ge window.

Finite Element Analysis of Elasto-Plastic Large Deformation considering the Isotropic Damage(the 2nd Report) (등방성손상을 고려한 탄소성 대변형 무제의 유한요소해석(제2보))

  • 이종원
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.2
    • /
    • pp.76-83
    • /
    • 2000
  • this paper was concentrated on the finite element formulation to solve boundary value problems by using the isotropic elasto-plastic damage constitutive model proposed previously(Noh, 2000) The plastic damage of ductile materials is generally accompanied by large plasticdeformation and strain. So nonlinearity problems induced by large deformation large rotation and large strain behaviors were dealt with using the nonlinear kinematics of elasto-plastic deformations based on the continuum mechanics. The elasto-plastic damage constitutive model was applied to the nonlinear finite element formulation process of Shin et al(1997) and an improved analysis model considering the all nonlinearities of structural behaviors is proposed. Finally to investigate the applicability and validity of the numerical model some numerial examples were considered.

  • PDF

Finite Element Analysis for Plastic Large Deformation and Anisotropic Damage

  • Nho, In-Sik;Yim, Sahng-Jun
    • Journal of Hydrospace Technology
    • /
    • v.1 no.1
    • /
    • pp.111-124
    • /
    • 1995
  • An improved analysis model for material nonlinearity induced by elasto-plastic deformation and damage including a large strain response was proposed. The elasto-plastic-damage constitutive model based on the continuum damage mechanics approach was adopted to overcome limitations of the conventional plastic analysis theory. It can manage the anisotropic tonsorial damage evolved during the time-independent plastic deformation process of materials. Updated Lagrangian finite element formulation for elasto-plastic damage coupling problems including large deformation, large rotation and large strain problems was completed to develop a numerical model which can predict all kinds of structural nonlinearities and damage rationally. Finally a finite element analysis code for two-dimensional plane problems was developed and the applicability and validity of the numerical model was investigated through some numerical examples. Calculations showed reasonable results in both geometrical nonlinear problems due to large deformation and material nonlinearity including the damage effect.

  • PDF

Thermal Analysis on Glass Backplane of OLED Displays During Joule Induced Crystallization Process (OLED 디스플레이 제작을 위한 Joule 유도 결정화 공정에서의 유리기판에 대한 열해석)

  • Kim, Dong-Hyun;Park, Seung-Ho;Hong, Won-Eui;Chung, Jang-Kyun;Ro, Jae-Sang;Lee, Seung-Hyuk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.10
    • /
    • pp.797-802
    • /
    • 2009
  • Large area crystallization of amorphous silicon thin-films on glass substrates is one of key technologies in manufacturing flat displays. Among various crystallization technologies, the Joule induced crystallization (JIC) is considered as the highly promising one in the OLED fabrication industries, since the amorphous silicon films on the glass can be crystallized within tens of microseconds, minimizing the thermally and structurally harmful influence on the glass. In the JIC process the metallic layers can be utilized to heat up the amorphous silicon thin films beyond the melting temperatures of silicon and can be fabricated as electrodes in OLED devices during the subsequent processes. This numerical study investigates the heating mechanisms during the JIC process and estimates the deformation of the glass substrate. Based on the thermal analysis, we can understand the temporal and spatial temperature fields of the backplane and its warping phenomena.

Finite Element Analysis for Forming Process of Polycrystalline Metal Including Texture Development (집합조직의 발전을 반영하는 다결정재의 성형공정해석)

  • 김응주;이용신
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.03a
    • /
    • pp.62-72
    • /
    • 1996
  • A process model is formulated considering the effect of crystallographic testure developed in forming process. The deformation induced plastic anisotropy can be predicted by capturing the evolution of texture during large deformatin in the poly crystaline aggregate. The anisotropic stiffness matrix for the aggregate is derived and implemented in Dulerian finite element code. As an application , the evolution of texture in rolling, drawing and extrusion processes are simulated . The numerical results show good agreement with reported experimental textures.

  • PDF