• Title/Summary/Keyword: Process safety performance indicator

Search Result 19, Processing Time 0.03 seconds

A Study of Sustainable Successful Management System Using ISO9004 Model (ISO9004 모델을 이용한 지속가능 성공경영시스템에 관한 연구)

  • Kim, Seok-Eun
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2012.04a
    • /
    • pp.139-155
    • /
    • 2012
  • A fundamental concepts of business environment changes and the importance of stakeholder's value creation is changing in the business. This study ISO9004: 2009 quality management system of Category 5: Strategy and Policy, Category 10: improvement, innovation and learning (Note) SBK target was to develop a model that is the company's sustained success. Three concepts of the new revision of ISO9004" in response to environmental changes," "learning", "innovation" (Note) SBK applied to the project settings and talent establish long-term vision was to establish the process as the organization's learning content was TDR for the creation of exceptional and innovative programs were introduced. As a result, (Note) SBK three years of continuous business performance indicator has grown dramatically to more than 50% continued success is going to create business models. But 100 years to accomplish the vision, ISO9004 model needs to extends the entire category as a management system to achieve the optimization needed.

  • PDF

A Study on the Significance of Unit Capacity Factor (Utilization Rate) of Nuclear Power Plants and Measures for Increasing (원전 이용률의 의의 및 증진방안 고찰)

  • Don Kug Lee;Chi Bum Bahn
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.18 no.2
    • /
    • pp.87-100
    • /
    • 2022
  • Unit capacity factor (utilization rate) of nuclear power plants (NPPs) is an important performance indicator. Since the first commercial operation of Kori Unit 1 began in April 1978, the utilization rate of domestic NPPs has gradually increased, reaching 90% from the end of the 1990s. However, due to various issues such as the Fukushima accident in 2011, corrosion of the CLP, the utilization rate dropped to 65~80%. In the early 1980s, the utilization rate of the U.S. NPPs was around 60%. However, since 2004, it has been consistently maintained above 90%. Therefore, in this study, we first examined the causes of declining the utilization rate in domestic NPPs. Next, the significances of the utilization rates are reviewed in five aspects: investment capability, electricity rate, safety and export, etc., with discussion on the current status of the utilization rates in the U.S. Based on this, three key factors are derived as the reasons of the increasing: equipment reliability program, on-line maintenance and the pursuit of institutional rationality. And finally, by synthesizing above results, the measures for increasing the utilization rate of domestic NPPs are proposed in terms of equipment management, institutional improvements, and personnel resources.

Quantitative Safety Risk Assessment using Aviation Safety Data (항공안전데이터를 사용한 위해요인 위험도 정량적 평가기법)

  • Hyunjin Paek;Jun Hwan Kim;Jae Jin Lim;Sungjin Jeon;Young Jae Choi
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.30 no.4
    • /
    • pp.145-158
    • /
    • 2022
  • To manage State Safety Program (SSP) in a more integrative and proactive manner, an aviation safety authority of the state shall detect and assess the risk of emerging or hidden safety hazards before they provoke accidents or incidents(ICAO, 2018). In case of South Korea, safety risk assessment is conducted by calculating the likelihood and severity of the hazard following ICAO's safety management manual. It is reasonable to extract the safety risk likelihood by calculating the number of occurrence caused by the hazard. However, it is ambiguous to assess the safety risk severity defined as the extent of harm that might be expected to occur as a consequence of the identified hazard. In this paper, a safety risk assessment method which quantitatively calculates the risk of hazard using aviation safety data(i.e. aviation safety mandatory report, etc.) is proposed. By utilizing the proposed method, the existing process that safety risk is being subjectively assessed by safety inspectors can be supplemented. So that essential aviation safety policy decision making can be accomplished by the accurate result of safety risk assessment.

Development of Financial Effect Measurement(FEM) Models for Quality Improvement and Innovation Activity (품질개선 및 혁신활동에서 재무성과 측정모형의 개발)

  • Choi, Sungwoon
    • Journal of the Korea Safety Management & Science
    • /
    • v.17 no.1
    • /
    • pp.337-348
    • /
    • 2015
  • This research introduces the Financial Effect Measurement (FEM) models which measures both the improvement and the innovation performance of Quality Control Circle (QCC) and activities of Six Sigma. Concepts and principle of Comprehensive Income Statement (CIS), Balanced Scorecard (BSC), Time-Driven Activity Based-Costing (TDABC) and Total Productive Maintenance (TPM) are applied in order to develop the 4 FEM models presented in this paper. First of all, FEM using CIS depicts the improvement effects of production capacity and yield using relationships between demand and supply, and line balancing efficiency between bottleneck process and non-bottleneck processes. Secondly, cause-and-effect relation of Key Performance Indicator (KPI) is used to present Critical Success Factor (CSF) effects for QC Story 15 steps of QCC and DMAIC (Define, Measure, Analyze, Improve, and Control) of Six Sigma. The next is FEM model for service management innovation activities that uses TDABC to calculate the time-driven effect for improving the indirect activities according to the cost object. Lastly, FEM model for TPM activities presents the interpretation of improvement effect model of TPM Capital Expenditure (CAPEX) and Operating Expenditure (OPEX) maintenance using profit, cash and Economic Added Value (EVA) as metrics of enterprise values. To better understand and further investigate FEMs, recent cases on National Quality Circle Contest are used to evaluate new financial effect measurement developed in this paper.

Development of Integrated System of Time-Driven Activity-Based Costing(TDABC) Using Balanced Scorecard(BSC) and Economic Value Added(EVA) (BSC와 EVA를 이용한 TDABC 통합시스템의 개발)

  • Choi, Sungwoon
    • Journal of the Korea Safety Management & Science
    • /
    • v.16 no.3
    • /
    • pp.451-469
    • /
    • 2014
  • The purpose of this study is to implement and develop the integrated Economic Value Added (EVA) and Time-Driven Activity-Based Costing (TDABC) model to seek both improvement of Net Operating Profit Less Adjusted Tax (NOPLAT) and reduction of Capital Charge (CC). Net Operating Profit Less Adjusted Tax (NOPLAT) can be maximized by reducing the indirect cost of an unused resource capacity increased by Cost Capacity Ratio (CCR) of TDABC. On the other hand, Capital Charge (CC) can be minimized by improving the efficiency of Invested Capital (IC) considered by Weighted Average Cost of Capital (WACC) of EVA. In addition, the integrated system of TDABC using Balance Scorecard (BSC) and EVA is developed by linking between the lagging indicators and the three leading indicators. The three leading indicators include customer, internal process and growth and learning perspectives whereas the lagging indicator includes NOPLAT and CC in terms of financial perspective. When the Critical Success Factor (CSF) of BSC is cascading as a cause and an effect relationship, time driver of TDABC and capital driver of EVA can be used efficiently as Key Performance Indicator (KPI) of BSC. For a better understanding of the proposed EVA/TDABC model and BSC/EVA/TDABC model, numerical examples are derived from this paper. From the proposed model, the time driver of TDABC and the capital driver of EVA are known to lessen indirect cost from comprehensive income statement when increasing the efficiency of operating IC from the statement of financial position with unified KPI cascading of aligned BSC CSFs.

A Study on the Work Management Method Considering Risks in Nuclear Power Plants (원자력발전소에서 리스크를 고려한 작업관리 방법)

  • Song, Tae-Young
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.10 no.1
    • /
    • pp.37-43
    • /
    • 2014
  • Nuclear power plants(NPPs) are consisted of power production functions and safety functions preventing leakage of radiation. Operators working in NPPs shall maintain these functions during an operation period through various activities such as improvement & modification, corrective maintenance, preventive maintenance and surveillance test. According to the performance of these work activities, there are configuration changes in NPPs systems. Its changes cause the increase of safety risks(CDF) and plant trip risks. Recently, the importance of risk management is increasing gradually in the operation process of NPPs. Therefore, this paper presents the work management methods using the various risk monitoring systems during power operation and overhaul period. Also this paper suggests the optimum application ways of risk systems for work management.

Estimation of Ecological Carrying Capacity for Oyster Culture by Ecological Indicator in Geoje-Hansan Bay (생태지표를 이용한 거제한산만 굴양식장의 생태학적 수용능력 산정)

  • Lee, Won-Chan;Cho, Yoon-Sik;Hong, Sok-Jin;Kim, Hyung-Chul;Kim, Jeong-Bae;Lee, Suk-Mo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.17 no.4
    • /
    • pp.315-322
    • /
    • 2011
  • The importance of aquafarming is increasing all over the world, however the coastal environment in the semi-closed inner bay has been aggravated due to the long term production and the high stocking density. For the sustainable aquafarming, there is a requirement for a eco-friendly fishery management by the estimation of ecological carrying capacity. The model development and application is still in the initial step, because it has to consider the whole ecosystem and all culture activities. As an alternative, there is a requirement for ecological indicator to assess the ecological performance. This study tried the estimation of ecological carrying capacity using ecological indicator. The production and the facility of the oyster farms was 4,935M/T, $49ind./m^3$ in Geoje-Hansan Bay(2008). Filtration pressure indicator was 0.203 which could provide a guidance on the present level of culture development. According to the environmental characteristics and the present oyster farms in Geoje-Hansan Bay, the newly assessed filtration pressure for the acceptable ecological carrying capacity was 0.102. Consequently, ecological carrying capacity in Geoje-Hansan Bay was 2,480M/T, $25ind./m^3$ and this represents the level of culture that can be introduced into Geoje-Hansan Bay without leading to significant changes to ecological process, species, populations or communities. Our study utilized the ecological indicator to estimate ecological carrying capacity of oyster farming for sustainable productivity and this could be the scientific basis for the eco-friendly fishery management.

A Study on the Development of Assessment Index for Catastrophic Incident Warning Sign at Refinery and Pertrochemical Plants (정유 및 석유화학플랜트 중대사고 전조신호 평가지표 개발에 관한 연구)

  • Yun, Yong Jin;Park, Dal Jae
    • Korean Chemical Engineering Research
    • /
    • v.57 no.5
    • /
    • pp.637-651
    • /
    • 2019
  • In the event of a major accident such as an explosion in a refinery or a petrochemical plant, it has caused a serious loss of life and property and has had a great impact on the insurance market. In the case of catastrophic incidents occurring in process industries such as refinery and petrochemical plants, only the proximate causes of loss have been drawn and studied from inspectors or claims adjustors responsible for claims of property insurers, incident cause investigators, and national forensic service workers. However, it has not been done well for conducting root cause analysis (RCA) and identifying the factors that contributed to the failure and establishing preventive measures before leading to chemical plant's catastrophic incidents. In this study, the criteria of warning signs on CCPS catastrophic incident waning sign self-assessment tool which was derived through the RCA method and the contribution factor analysis method using the swiss cheese model principle has been reviewed first. Secondly, in order to determine the major incident warning signs in an actual chemical plant, 614 recommendations which have been issued during last the 17 years by loss control engineers of global reinsurers were analyzed. Finally, in order to facilitate the assessment index for catastrophic incident warning signs, the criteria for the catastrophic incident warning sign index at chemical plants were grouped by type and classified into upper category and lower category. Then, a catastrophic incident warning sign index for a chemical plant was developed using the weighted values of each category derived by applying the analytic hierarchy process (pairwise comparison method) through a questionnaire answered by relevant experts of the chemical plant. It is expected that the final 'assessment index for catastrophic incident warning signs' can be utilized by the refinery and petrochemical plant's internal as well as external auditors to assess vulnerability levels related to incident warning signs, and identify the elements of incident warning signs that need to be tracked and managed to prevent the occurrence of serious incidents in the future.

A Regression-Based Estimation of Strain Distribution for Safety Monitoring of the Steel Girder Subjected to Uncertain Loads (불확실한 하중을 받는 강재 보 구조물 안전도 모니터링을 위한 변형률 분포의 회귀 분석적 추정)

  • Lee, Ji Hoon;Choi, Se Woon;Park, Hyo Seon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.2
    • /
    • pp.10-20
    • /
    • 2013
  • To evaluate the safety of a beam structure, strains are measured as an indicator of structural states. However, unless strain sensors are installed exactly on where maximum or other representative strains occur, the techniques by which rational assessment through measured strains is accomplished are required. Thus, this study suggests a process to estimate strain distribution on the steel beam from discrete strains measured by sensors. In the presented technique, the targeted beam is regarded to be subjected to unknown loads so that applicability is enhanced. Final strain distribution is given as form of a function after regression analysis. To verify the performance of estimation, a bending test for steel beam on which distributed and concentrated loads simultaneously act is conducted. From the comparison between estimated and directly measured strains in the test, the curve of strain distribution and the strain at arbitrary location could be predicted within maximum relative error 3.32% and maximum absolute error of $2.32{\mu}{\varepsilon}$, respectively. Thus reliable and practical monitoring is expected to apply effectively for the steel beam structure.