• 제목/요약/키워드: Process parameter optimization

검색결과 384건 처리시간 0.021초

레이저 용접공정의 자동화를 위한 신경망 모델과 목적함수를 이용한 최적화 기법 개발 (Development of Optimization Methodology for Laser Welding Process Automation Using Neural Network Model and Objective Function)

  • 박영환
    • 한국공작기계학회논문집
    • /
    • 제15권5호
    • /
    • pp.123-130
    • /
    • 2006
  • In manufacturing, process automation and parameter optimization are required in order to improve productivity. Especially in welding process, productivity and weldablity should be considered to determine the process parameter. In this paper, optimization methodology was proposed to determine the welding conditions using the objective function in terms of productivity and weldablity. In order to conduct this, welding experiments were carried out. Tensile test was performed to evaluate the weldability. Neural network model to estimate tensile strength using the laser power, welding speed, and wire feed rate was developed. Objective function was defined using the normalized tensile strength which represented the weldablilty and welding speed and wire feed rate which represented the productivity. The optimal welding parameters which maximized the objective function were determined.

Nonsingleton 퍼지 논리 시스템을 이용한 강인 시스템의 설계 (Robust Design using Nonsingleton Fuzzy Logic System)

  • 류연범;안태천
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부 B
    • /
    • pp.493-495
    • /
    • 1998
  • Robust design is one method to make manufacturing less sensitive to manufacturing process. Also it is cost effective technique to improve the quality process. This method uses statistically planned experiments to vary settings of important process control parameters. In this paper we apply fuzzy optimization and fuzzy logic system to robust design concept. First a method which uses fuzzy optimization in obtaining optimum settings by measured data from experiments will be presented. Second, fuzzy logic system is made to reduce experiments using experiments results consisted with key control parameter combinations. Then optimum parameter set points are obtained by the descrebed first fuzzy optimization method after prediction the results of each parameter combinations considering each control parameter variations by nonsingleton fuzzy logic system concept.

  • PDF

조정점 최적탐색에 의한 Form Parameter 방법에 관한 연구 (A Study on Form Parameter Method by Optimum Vertex Point Search)

  • 김수영;신성철;김덕은
    • 대한조선학회논문집
    • /
    • 제39권4호
    • /
    • pp.60-65
    • /
    • 2002
  • 본 연구는 Form Parameter를 만족하는 선형 생성 과정을 최적화 과정으로 취급하였다. 목적함수는 fairness 기준을 도입하고 설계변수는 B-spline 곡선의 조정점으로 하며 제약조건은 설계자에 의해서 주어지는 기하학적 형상으로 하였다. 최적화 방법은 GA(Genetic Algorithm)와 최적성 기준(optimality criteria)을 병행하였다.

Large-scaled truss topology optimization with filter and iterative parameter control algorithm of Tikhonov regularization

  • Nguyen, Vi T.;Lee, Dongkyu
    • Steel and Composite Structures
    • /
    • 제39권5호
    • /
    • pp.511-528
    • /
    • 2021
  • There are recently some advances in solving numerically topology optimization problems for large-scaled trusses based on ground structure approach. A disadvantage of this approach is that the final design usually includes many bars, which is difficult to be produced in practice. One of efficient tools is a so-called filter scheme for the ground structure to reduce this difficulty and determine several distinct bars. In detail, this technique is valuable for practical uses because unnecessary bars are filtered out from the ground structure to obtain a well-defined structure during the topology optimization process, while it still guarantees the global equilibrium condition. This process, however, leads to a singular system of equilibrium equations. In this case, the minimization of least squares with Tikhonov regularization is adopted. In this paper, a proposed algorithm in controlling optimal Tikhonov parameter is considered in combination with the filter scheme due to its crucial role in obtaining solution to remove numerical singularity and saving computational time by using sparse matrix, which means that the discrete optimal topology solutions depend on choosing the Tikhonov parameter efficiently. Several numerical examples are investigated to demonstrate the efficiency of the filter parameter control algorithm in terms of the large-scaled optimal topology designs.

Form Parameter Design 을 이용한 선형최적화 (Hull Form Optimization Based on From Parameter Design)

  • 이연승;최영복
    • 대한조선학회논문집
    • /
    • 제46권6호
    • /
    • pp.562-568
    • /
    • 2009
  • Hull form generation and variation methods to be mainly discussed in this study are based on the fairness optimized B-Spline form parameter curves (FOBFC). These curves can be used both as indirect modification function for variation and as geometric entities for hull form generation. The flexibility and functionality of geometric control technique play the most important role for the success of hull form optimization. This study shows the hydrodynamic optimization process and the characteristics of optimum design hull forms of a 14,000TEU containership and 60K LPG carrier. SHIPFLOW has been used as a CFD solver and FS-Framework as a geometric modeler and optimizer.

반응표면분석법을 이용한 모수 및 공차설계 통합모형 (Response Surface Approach to Integrated Optimization Modeling for Parameter and Tolerance Design)

  • Young Jin Kim
    • 품질경영학회지
    • /
    • 제30권4호
    • /
    • pp.58-67
    • /
    • 2002
  • Since the inception of off-line quality control, it has drawn a particular attention from research community and it has been implemented in a wide variety of industries mainly due to its extensive applicability to numerous real situations. Emphasizing design issues rather than control issues related to manufacturing processes, off-line quality control has been recognized as a cost-effective approach to quality improvement. It mainly consists of three design stages: system design, parameter design, and tolerance design which are implemented in a sequential manner. Utilizing experimental designs and optimization techniques, off-line quality control is aimed at achieving product performance insensitive to external noises by reducing process variability. In spite of its conceptual soundness and practical significance, however, off-line quality control has also been criticized to a great extent due to its heuristic nature of investigation. In addition, it has also been pointed out that the process optimization procedures are inefficient. To enhance the current practice of off-line quality control, this study proposes an integrated optimization model by utilizing a well-established statistical tool, so called response surface methodology (RSM), and a tolerance - cost relationship.

차량외판 프레스 헤밍공정의 유한요소해석 및 공정변수 최적화 (Finite Element Analysis and Parameter Optimization for the Press Hemming of Automotive Closures)

  • 김지훈;곽종환;김세호;주용현;신현식
    • 소성∙가공
    • /
    • 제25권1호
    • /
    • pp.29-35
    • /
    • 2016
  • In the current study, finite element analysis was conducted for the press hemming of automotive panels in order to predict various hemming defects such as roll-in and turn down. The analysis used the exact punch movement based on the cam location and considered the sealer between the inner and outer panels with an artificial contact thickness. The analysis results quantify the hemming defects especially at the flange edge in the matching region of the head lamp. A design of experiments along with the parameter study was used to obtain the optimum process parameters for minimizing hemming defects. The optimization process selects the intake angle, bending angle of the hemming punch, and the flange height of the outer panel. The optimum design process determines an appropriate tool angle and flange height to reduce the roll-in and turn-down as compared to the initial design.

Laser micro-drilling of CNT reinforced polymer nanocomposite: A parametric study using RSM and APSO

  • Lipsamayee Mishra;Trupti Ranjan Mahapatra;Debadutta Mishra;Akshaya Kumar Rout
    • Advances in materials Research
    • /
    • 제13권1호
    • /
    • pp.1-18
    • /
    • 2024
  • The present experimental investigation focuses on finding optimal parametric data-set of laser micro-drilling operation with minimum taper and Heat-affected zone during laser micro-drilling of Carbon Nanotube/Epoxy-based composite materials. Experiments have been conducted as per Box-Behnken design (BBD) techniques considering cutting speed, lamp current, pulse frequency and air pressure as input process parameters. Then, the relationship between control parameters and output responses is developed using second-order nonlinear regression models. The analysis of variance test has also been performed to check the adequacy of the developed mathematical model. Using the Response Surface Methodology (RSM) and an Accelerated particle swarm optimization (APSO) technique, optimum process parameters are evaluated and compared. Moreover, confirmation tests are conducted with the optimal parameter settings obtained from RSM and APSO and improvement in performance parameter is noticed in each case. The optimal process parameter setting obtained from predictive RSM based APSO techniques are speed=150 (m/s), current=22 (amp), pulse frequency (3 kHz), Air pressure (1 kg/cm2) for Taper and speed=150 (m/s), current=22 (amp), pulse frequency (3 kHz), air pressure (3 kg/cm2) for HAZ. From the confirmatory experimental result, it is observed that the APSO metaheuristic algorithm performs efficiently for optimizing the responses during laser micro-drilling process of nanocomposites both in individual and multi-objective optimization.

Seismic behavior enhancement of frame structure considering parameter sensitivity of self-centering braces

  • Xu, Longhe;Xie, Xingsi;Yan, Xintong;Li, Zhongxian
    • Structural Engineering and Mechanics
    • /
    • 제71권1호
    • /
    • pp.45-56
    • /
    • 2019
  • A modified mechanical model of pre-pressed spring self-centering energy dissipation (PS-SCED) brace is proposed, and the hysteresis band is distinguished by the indication of relevant state variables. The MDOF frame system equipped with the braces is formulated in an incremental form of linear acceleration method. A multi-objective genetic algorithm (GA) based brace parameter optimization method is developed to obtain an optimal solution from the primary design scheme. Parameter sensitivities derived by the direct differentiation method are used to modify the change rate of parameters in the GA operator. A case study is conducted on a steel braced frame to illustrate the effect of brace parameters on node displacements, and validate the feasibility of the modified mechanical model. The optimization results and computational process information are compared among three cases of different strategies of parameter change as well. The accuracy is also verified by the calculation results of finite element model. This work can help the applications of PS-SCED brace optimization related to parameter sensitivity, and fulfill the systematic design procedure of PS-SCED brace-structure system with completed and prospective consequences.

고분자압출의 공정변수가 통기성필름강도에 미치는 영향 (Influence of Process Parameters on the Breathable Film Strength of Polymer Extrusion)

  • 최만성
    • 한국생산제조학회지
    • /
    • 제21권4호
    • /
    • pp.625-632
    • /
    • 2012
  • Optimization of process parameters in polymer extrusion is an important task to reduce manufacturing cost. To determine the optimum values of the process parameters, it is essential to find their influence on the strength of polymer breathable thin film. The significance of six important process parameters namely, extruder cylinder temperature, extruder speed, extruder dies temperature, cooling roll temperature, stretching ratio, stretching roll temperature on breathable film strength of polymer extrusion was determined. Moreover, this paper presents the application of Taguchi method and analysis of variance (ANOVA) for maximization of the breathable film strength influenced by extrusion parameters. The optimum parameter combination of extrusion process was obtained by using the analysis of signal-to-noise ratio. The conclusion revealed that extruder speed and stretching ratio were the most influential factor on the film strength, respectively. The best results of film strength were obtained at higher extruder speed and stretching ratio.