• Title/Summary/Keyword: Process of Moisture Absorption

Search Result 103, Processing Time 0.027 seconds

Effects of the Changes in Handsheet Structure on the Water Absorption and Moisture Absorption (수초지 구조변화에 따른 흡수·흡습 특성 변화 연구)

  • Sung, Yong Joo;Kim, Dong Sung;Lee, Ji Young
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.48 no.3
    • /
    • pp.30-36
    • /
    • 2016
  • This study was conducted to investigate the influence of the changes in handsheet structure by beating, wet pressing and the addition of wood flour spacer on the water absorption and the moisture absorption properties. The higher beating treatment of BKP resulted in the denser structure of handsheet samples, which leaded to the lower water and moisture absorption. The wet pressing showed the similar effects by reducing the bulk of handsheets. In case of the handsheet samples with similar bulk structure made of different beaten pulps, the severer beating treatment increased the water absorption and the moisture absorption. The addition of the wood flour spacer resulted in the higher bulk following the higher water and moisture adsorption. Since the water and the moisture absorption properties of paper products could greatly affect on not only the product quality but also the process runnability, the control of the water response of paper product has been considered as very important technology. The results of this study might be useful for control of water and moisture absorption properties of paper products.

The Effect of Moisture Absorption and Gel-coating Process on the Mechanical Properties of the Basalt Fiber Reinforced Composite

  • Kim, Yun-Hae;Park, Jun-Mu;Yoon, Sung-Won;Lee, Jin-Woo;Jung, Min-Kyo;Murakami, Ri-Ichi
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.3
    • /
    • pp.148-154
    • /
    • 2011
  • Generally, strength degradation is caused by the absorption of moisture in composites. For this reason, a fracture is generated in the composites and traces of glass fiber degrade human health and physical damage is generated. Therefore, in this research, we studied the mechanical properties change of composites by moistureabsorption. The composites were manufactured with and without the Gel-coating process and were immersed in a moisture absorption device at $80^{\circ}C$ for more than 100 days. The mechanical properties of the moistureabsorption composites and the composites which dry after moisture-absorption were compared. The mechanical properties degradation of basalt fiber composites according to the result of the measurement of moistureabsorption was smaller than that of glass fiber composites by about 20%. In addition, the coefficient of moisture absorption was lower for the case of Gel-coating processing than the composites without the Gel-coating process by about 2% and it was deduced that Gel-coating did not have a significant effect on the mechanical properties.

Effect of Carbonization Temperature on Hygric Performance of Carbonized Fiberboards

  • Lee, Min;Park, Sang-Bum;Lee, Sang-Min
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.5
    • /
    • pp.615-623
    • /
    • 2014
  • Increases of public attention on healthy environment lead to the regulation of indoor air quality such as Clean Healthy House Construction Standard. This standard covers emission of total volatile organic compounds (TVOCs) (e.g., formaldehyde, benzene, and toluene), ventilation, and use of environmentally-friendly products or functional products. Moisture absorption and desorption abilities are a recommended functionality for improving indoor air quality. In this study, moisture absorption and desorption capacities of carbonized board from wood-based panels and other materials were determined by using UNT-HEAT-01 according to ISO 24358:2008. Pine had higher moisture absorption and desorption capacities ($49.0g/m^2$ and $35.3g/m^2$, respectively) than hinoki cypress, cement board, gypsum board, oriented strand board, and medium density fiberboard (MDF). The moisture absorption and desorption capacities differed considerably according to the wood species. After carbonization process at $400^{\circ}C$, the absorption and desorption ability of MDF increased to 38% and 60%, respectively. However, moisture absorption and desorption capacities decreased with increasing carbonization temperature, but they were still higher than original MDF. Therefore, it is suggested that carbonization below $600^{\circ}C$ can improve moisture absorption/desorption capacities.

A Study on the Effect of Moisture Content of Wood upon the Absorption on Zinc Chloride Solution (침지처리법에(浸漬處理法)있어서 목재함수량(木材含水量)이 염화아연 흡수율(吸收率)에 미치는 영향(影響))

  • Shim, Chong-Supp;Shin, Dong-So
    • Journal of the Korean Wood Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.133-134
    • /
    • 1982
  • This experiment has been made to investigate the absorption of watersoluble zinc chloride by Pinus densiflora S. et Z. at different moisture content, under soaking process, to decide the optimum content condition for the maximum absorption of zinc chloride by the wood tested and to investigate the concentration of zinc chloride affecting each moisture content of wood. Material was cut in the Dept. of Forest, College of Agr. S.N.U. Suwon, Korea. Sample was divided into sap and heartwood group and cut $2{\times}2{\times}2\;cm$ in size, having exact three dimensions, using the part of D.B.H. The numbers of sample were 20 pieces for each moisture content condition for both sap and heartwood. Especially, the samples were protected from exposure to keep moisture content in green condition. The ranges of moisture content tested were as the table 3 and 4. The conclusions were as follows: 1. With 3% zinc chloride solution, the rate of absorption decreased with the time increased, if the air seasoned Korean red pine (Pinus densiflora S. et Z.) was treated in steeping process. Initial absorption for 30 minutes was more than 50% of total absorpon for 24 hours. 2. Rate of absorption was same under the green condition, while rate of absorption under the moisture content 7 to 30% varied. 3. Although it was not quite proportional change in the absorption with the difference of moisture content, the great change in the absorption occured by seasoning. With exception sap green condition, sapwood twice more permeable than the heartwood in the oven dried condition and it has been observed the nearly same amount of absorption at the moisture content of 7%, 10% and 15% respectively in heartwood. 4. It was better from water in wood from view-point of absorption of zinc chloride solution, but it was difficult practically to obtain the smallest moisture content, and then it was decided that values of allowable moisture content, on the basis of mean absorption, were 15% to 20% in the sapwood, and in the heartwood, 10% to 15%. The mean absorption for each moisture content in the sap and the heartwood were as following. 5. In general, the concentration of zinc chloride after steeping was nearly same between moisture content and sap and heartwood respectively.

  • PDF

Effect of Moisture Absorption on the Shear Strength of Fiber-reinforced Composites (섬유강화 복합재료의 전단강도에 미치는 흡습의 영향)

  • Kim, Yun-Hae;Kim, Kook-Jin;Han, Joong-Won;Jo, Young-Dae;Bae, Sung-Youl;Moon, Kyoung-Man;Kim, Dong-Hun
    • Composites Research
    • /
    • v.21 no.2
    • /
    • pp.1-7
    • /
    • 2008
  • Composite materials are currently used in aero-space industry, sport and leisure industry but it has many problems such as mechanical properties deterioration by moisture absorption. In this study, we appraised interlaminar shear strength with specimen that immersed/ immersed-dried in water environment(distilled/sea) during $100{\sim}200$days. In the result, properties degradation of resin part and silan part by moisture absorption is judged early on main cause of interlaminar shear strength, and later destruction of mechanical bonding between silan part and fiber by moisture absorption is Judged later main cause of interlaminar shear strength. In conclusion, the recovery of interlaminar shear strength is judged to difficult due to interfacial destruction by moisture when pass over irreversible by moisture in composite material.

The Effect of Hygrothermal Aging on the Properties of Epoxy Resin

  • Wang, Youyuan;Liu, Yu;Xiao, Kun;Wang, Can;Zhang, Zhanxi
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.892-901
    • /
    • 2018
  • Because of excellent electrical properties, epoxy resin is widely used in packaging and casting power equipment. Moisture and temperature in the environment are inclined to seriously affect the insulation tolerance of epoxy resin. This work focuses on the aging characteristics of epoxy resin in hygrothermal environment. Scanning electron microscopy images show that there are micro-crack, micro-slit and holes inside aged samples. The moisture absorption process undergoes three equilibrium stages and it does not follow the Fick's second law. Observing the change of hydrogen bonds in the infrared spectra of the dried samples, it is found that chemically moisture absorption immerges when the physical moisture absorption entered the third equilibrium stage. By Debye equation to fit the imaginary part of the dielectric constant, it is concluded that the uniformity of water molecule has a great influence on the electrical conductivity loss. Furthermore, the polarization loss can be more easily affected by water molecules than small free molecules. After the aged samples being dried, their real and imaginary part of the dielectric constant descend, but their original electrical properties cannot completely restored. After chemical moisture absorption appears inside the material, the residual space charges increase significantly and the charge dissipation rate slow down obviously.

Experimental Examinations on the Phenomenon of Transfer and Moisture Diffusion in Wood (목재내(木材內)의 수분확산(水分擴散) 및 전달현상(傳達現象)에 관한 실험적 검정(檢定))

  • Lee, Weon-Hee
    • Journal of the Korean Wood Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.75-80
    • /
    • 1996
  • The purpose of this study is to clarify the mechanism of moisture transfer depend on the thickness of the spruce(Picea sitchensis Carr.). Therefore, as the basic research of moisture transmission, the amount of moisture transmission and the moisture distribution in specimens and temperature of it's surfaces in vapor transmission process were investigated. The experiment was conducted in a steady state. and the moisture distribution was measured by knife cutting and weighing the specimens. The following conclusions were obtained ; 1. It can be found that distribution of moisture in the specimen can be approximated by two different straight lines intersecting at nine or ten percent moisture content. The amount of moisture movement defends on the gradient of moisture in the wood. 2. It is investigated that the wood surface moisture contents(MCs) are less for thinner specimens than for thick ones on the absorption side. On the other hand, the wood surface MCs are greater for thinner specimens than for thick ones on the desorption side. The main factor that affects the EMC of wood would be temperature when the relative humidity of atmosphere is constant. The specimen generate heat with the absorption and desorption process. In addition, the velocities of moisture transmission varied with the thicknesses of specimens. If the temperature of wood becomes greater, its MC decreases. Then the difference between surface MC and EMC of adsorption and desorption side becomes greater for thinner specimens. Therefore it is considered that the coefficients of moisture transfer decreases with the increases of the specimens' thicknesses.

  • PDF

Hygrothermal effect on the moisture absorption in composite laminates with transverse cracks and delamination

  • Kesba, Mohamed Khodjet;Benkhedda, A.;Adda bedia, E.A.;Boukert, B.
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.4
    • /
    • pp.315-331
    • /
    • 2019
  • The stiffness degradation of the cross-ply composite laminates containing a transverse cracking and delamination in $90^{\circ}$ layer is predicted by using a modified shear-lag model by introducing the stress perturbation function. The prediction shows better agreement with the experimental results published by Ogihara and Takeda 1995, especially for laminates with thicker $90^{\circ}$ plies in which extensive delamination occurs. A homogenised analytic model for average transient moisture uptake in composite laminates containing periodically distributed matrix cracks and delamination is presented. It is shown that the model well describes the moisture absorption in a cross-ply composite laminate containing periodically distributed transverse matrix cracks in the $90^{\circ}$ plies. The obtained results represent well the dependence of the stiffness degradation on the crack density, thickness ratio and moisture absorption. The present study has proved to be important to the understanding of the degradation of the material propertiesin the failure process when the laminates in which the delamination grows extensively.

A Study on the Moisture Content and Cracking Behavior of out side Exposed columns According to Drying Methods of Hnaok Buildings (한옥건축물의 건조방법에 따른 외진 노출 기둥의 함수율 및 균열 양상에 관한 연구)

  • Kim, Yun-Sang
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.21 no.1
    • /
    • pp.37-44
    • /
    • 2019
  • Recently, various tourist products using hanok have increased rapidly. In the meantime, there is a steady demand for Hanok architecture. However, there are many negative perceptions about wood deformation and biodeterioration. Wood deformation and biodeterioration are related to moisture content. And the cracks occur in the process of removing water from the wood. Therefore, this study investigates the moisture content and cracks of dried hanok made of wood according to the drying method of wood. Drying methods include natural seasoning and artificial seasoning. There was a difference in moisture removal depending on drying period and method of natural seasoning. Drying time should be about 3 years for natural seasoning, so the moisture content of the wood is stable. In addition, the moisture absorption rate was low even in a humid environment where the voids were removed. However, natural seasoning is time consuming. Artificial seasoning, on the other hand, can quickly remove moisture from the wood and reduce porosity, but it is costly. Cracks that occur during the drying of wood may become problematic in appearance and stability due to wider spacing over time. As a result, the difference in the moisture content of the timber depending on the drying method and drying period of the wood was maintained even after the formation. These gaps appeared to be differences in moisture absorption in a wet environment.

Research on the Performance of Regenerator using Hot Water from Solar Water Heater(1st paper : On the Effect of Solution Temperature to Regeneration Rate) (태양열 온수기를 이용한 다목적 공조시스템의 재생효율에 관한 연구(제1보 액체흡수제 온도가 재생량에 미치는 영향))

  • Woo, Jong-Soo;Choi, Kwang-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.24 no.1
    • /
    • pp.53-61
    • /
    • 2004
  • Absorption potential of desiccant solution significantly decreases after absorbing moisture from humid air, and a regeneration process requires a great amount of energy to recover absorption potential of desiccant solution. In an effort to develop an efficient solar water heater, this study examines a regeneration process using hot water obtained from solar water heater to recover absorption potential by evaporating moisture in the liquid desiccant. In this paper, a solar absorption dehumidifying system with solar water heater is suggested to save the electricity for operating an air conditioner. LiGl(lithium chloride) solution was adopted as a liquid desiccant in the proposed system, and hot water obtained from the solar water heater was used for regenerating the liquid desiccant. As a result, it was clear that the dilute LiCl solution could be regenerated by hot water, and the regeneration rate depends mostly on temperature level of liquid desiccant. The regeneration rates were about 2.4kg/h with $40^{\circ}C$, 4.0kg/h with $50^{\circ}C$, and 6.2kg/h with $60^{\circ}C$ of hot water respectively.