• Title/Summary/Keyword: Process network

Search Result 6,579, Processing Time 0.036 seconds

The Development of a Network based Visual Agent Platform for Tangible Space (실감 만남을 위한 네트워크 기반 Visual Agent Platform 개발)

  • Kim, Hyun-Ki;Choy, Ick;You, Bum-Jae
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.172-174
    • /
    • 2007
  • In this paper, we designed a embedded system that will perform a primary role of Tangible Space implementation. This hardware includes function of image capture through camera interface, image process and sending off image information by LAN(local area network) or WLAN(wireless local area network). We define this hardware as a network based Visual Agent Platform for Tangible Space, This Visual Agent Platform includes the software that is RTLinux and CORBA

  • PDF

Vibration Prediction in Milling Process by Using Neural Network (신경회로망을 이용한 밀링 공정의 진동 예측)

  • 이신영
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.5
    • /
    • pp.1-7
    • /
    • 2003
  • In order to predict vibrations occurred during end-milling processes, the cutting dynamics was modelled by using neural network and combined with structural dynamics by considering dynamic cutting state. Specific cutting force constants of the cutting dynamics model were obtained by averaging cutting forces. Tool diameter, cutting speed, fled, axial and radial depth of cut were considered as machining factors in neural network model of cutting dynamics. Cutting farces by test and by neural network simulation were compared and the vibration displacement during end-milling was simulated.

Applying scheduling techniques for improving the performance of network equipment network subsystem (네트워크 장비 성능 향상을 위한 네트워크 서브시스템 스케줄링 기법 적용)

  • Bae, Byoungmin;Kim, MinJung;Lee, GowangLo;Jung, YungJoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.65-67
    • /
    • 2013
  • The recent high-performance network equipment is required, and also require high network bandwidth utilization. It is a trend to develop increasingly using multi-core processors for high-performance network servers. Propose a method to improve the performance of the network sub-system, considering the characteristics of multi-core as a way to improve these high-performance and high network throughput. In this paper, we confirm through experiments on how to improve the communication performance, optimize performance and take full advantage of multi-core by Network communication process to improve the performance of the multi-core processor architecture, the process of concentration, the overhead for each core, based on network traffic according to the interrupt affinity in this process to determine the optimal core to give. The experiments were implemented in the Linux kernel, and experiments to improve the network throughput up to 30%, bringing reduces the Linux communication process to improve the performance of the processor overhead of up to 10%.

  • PDF

An Efficient Method for Determining Work Process Number of Each Node on Computation Grid (계산 그리드 상에서 각 노드의 작업 프로세스 수를 결정하기 위한 효율적인 방법)

  • Kim Young-Hak;Cho Soo-Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.5 no.1
    • /
    • pp.189-199
    • /
    • 2005
  • The grid computing is a technique to solve big problems such as a field of scientific technique by sharing the computing power and a big storage space of the numerous computers on the distributed network. The environment of the grid computing is composed with the WAN which has a different performance and a heterogeneous network condition. Therefore, it is more important to reflect heterogeneous performance elements to calculation work. In this paper, we propose an efficient method that decides work process number of each node by considering a network state information. The network state information considers the latency, the bandwidth and latency-bandwidth mixture information. First, using information which was measured, we compute the performance ratio and decide work process number of each node. Finally, RSL file was created automatically based on work process number which was decided, and then accomplishes a work. The network performance information is collected by the NWS. According to experimental results, the method which was considered of network performance information is improved respectively 23%, 31%, and 57%, compared to the methods of existing in a viewpoint of work amount, work process number, and node number.

  • PDF

In-process Monitoring of Milling Chatter by Artificial Neural Network (신경회로망 모델을 이용한 밀링채터의 실시간 감시에 대한 연구)

  • Yoon, Sun-Il;Lee, Sang-Seog;Kim, Hee-Sool
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.5
    • /
    • pp.25-32
    • /
    • 1995
  • In highly automated milling process, in-process monitoring of the malfunction is indispensable to ensure efficient cutting operation. Among many malfunctions in milling process, chatter vibration deteriorates surface finish, tool life and productivity. In this study, the monitoring system of chatter vibration for face milling process is proposed and experimentally estimated. The monitoring system employs two types of sensor such as cutting force and acceleration in sensory detection state. The RMS value and band frequency energy of the sensor signals are extracted in time domain for the input patterns of neural network to reduce time delay in signal processing state. The resultes of experimental evaluation show that the system works well over a wide range of cutting conditions.

  • PDF

Public Participation in the Process of Local Public Health Policy, Using Policy Network Analysis

  • Park, Yukyung;Kim, Chang-Yup;You, Myoung Soon;Lee, Kun Sei;Park, Eunyoung
    • Journal of Preventive Medicine and Public Health
    • /
    • v.47 no.6
    • /
    • pp.298-308
    • /
    • 2014
  • Objectives: To assess the current public participation in-local health policy and its implications through the analysis of policy networks in health center programs. Methods: We examined the decision-making process in sub-health center installations and the implementation process in metabolic syndrome management program cases in two districts ('gu's) of Seoul. Participants of the policy network were selected by the snowballing method and completed self-administered questionnaires. Actors, the interactions among actors, and the characteristics of the network were analyzed by Netminer. Results: The results showed that the public is not yet actively participating in the local public health policy processes of decision-making and implementation. In the decision-making process, most of the network actors were in the public sector, while the private sector was a minor actor and participated in only a limited number of issues after the major decisions were made. In the implementation process, the program was led by the health center, while other actors participated passively. Conclusions: Public participation in Korean public health policy is not yet well activated. Preliminary discussions with various stakeholders, including civil society, are needed before making important local public health policy decisions. In addition, efforts to include local institutions and residents in the implementation process with the public officials are necessary to improve the situation.

Optimal Reheating Condition of Semi-solid Material in Semi-solid Forging by Neural Network

  • Park, Jae-Chan;Kim, Young-Ho;Park, Joon-Hong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.2
    • /
    • pp.49-56
    • /
    • 2003
  • As semi-solid forging (SSF) is compared with conventional casting such as gravity die-casting and squeeze casting, the product without inner defects can be obtained from semi-solid forming and globular microstructure as well. Generally, SSF consists of reheating, forging, and ejecting processes. In the reheating process, the materials are heated up to the temperature between the solidus and liquidus line at which the materials exists in the form of liquid-solid mixture. The process variables such as reheating time, reheating temperature, reheating holding time, and induction heating power has large effect on the quality of the reheated billets. It is difficult to consider all the variables at the same time for predicting the quality. In this paper, Taguchi method, regression analysis and neural network were applied to analyze the relationship between processing conditions and solid fraction. A356 alloy was used for the present study, and the learning data were extracted from the reheating experiments. Results by neural network were in good agreement with those by experiment. Polynominal regression analysis was formulated using the test data from neural network. Optimum processing condition was calculated to minimize the grain size and solid fraction standard deviation or to maximize the specimen temperature average. Discussion is given about reheating process of row material and results are presented with regard to accurate process variables fur proper solid fraction, specimen temperature and grain size.

A Study of the Application of Neural Network for the Prediction of Top-bead Height (표면 비드높이 예측을 위한 최적의 신경회로망의 적용에 관한 연구)

  • Son, J.S.;Kim, I.S.;Park, C.E.;Kim, I.J.;Kim, H.H.;Seo, J.H.;Shim, J.Y.
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.4
    • /
    • pp.87-92
    • /
    • 2007
  • The full automation welding has not yet been achieved partly because the mathematical model for the process parameters of a given welding task is not fully understood and quantified. Several mathematical models to control welding quality, productivity, microstructure and weld properties in arc welding processes have been studied. However, it is not an easy task to apply them to the various practical situations because the relationship between the process parameters and the bead geometry is non-linear and also they are usually dependent on the specific experimental results. Practically, it is difficult, but important to know how to establish a mathematical model that can predict the result of the actual welding process and how to select the optimum welding condition under a certain constraint. In this paper, an attempt has been made to develop an neural network model to predict the weld top-bead height as a function of key process parameters in the welding. and to compare the developed models using three different training algorithms in order to select an adequate neural network model for prediction of top-bead height.

A Study on Prediction for Top Bead Width using Radial Basis Function Network (방사형기저함수망을 이용한 표면 비드폭 예측에 관한 연구)

  • 손준식;김인주;김일수;김학형
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.170-174
    • /
    • 2004
  • Despite the widespread use in the various manufacturing industries, the full automation of the robotic CO$_2$ welding has not yet been achieved partly because the mathematical model for the process parameters of a given welding task is not fully understood and quantified. Several mathematical models to control welding quality, productivity, microstructure and weld properties in arc welding processes have been studied. However, it is not an easy task to apply them to the various practical situations because the relationship between the process parameters and the bead geometry is non-linear and also they are usually dependent on the specific experimental results. Practically, it is difficult, but important to know how to establish a mathematical model that can predict the result of the actual welding process and how to select the optimum welding condition under a certain constraint. In this paper, an attempt has been made to develop an Radial basis function network model to predict the weld top-bead width as a function of key process parameters in the robotic CO$_2$ welding. and to compare the developed model and a simple neural network model using two different training algorithms in order to verify performance. of the developed model.

  • PDF

In-process Weld Quality Monitoring by the Multi-layer Perceptron Neural Network in Ultrasonic Metal Welding (초음파 금속용접 시 다층 퍼셉트론 뉴럴 네트워크를 이용한 용접품질의 In-process 모니터링)

  • Shahid, Muhammad Bilal;Park, Dong-Sam
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.6
    • /
    • pp.89-97
    • /
    • 2022
  • Ultrasonic metal welding has been widely used for joining lithium-ion battery tabs. Weld quality monitoring has been an important issue in lithium-ion battery manufacturing. This study focuses on the weld quality monitoring in ultrasonic metal welding with the longitudinal-torsional vibration mode horn developed newly. As the quality of ultrasonic welding depends on welding parameters like pressure, time, and amplitude, the suitable values of these parameters were selected for experimentation. The welds were tested via tensile testing machine and weld strengths were investigated. The dataset collected for performance test was used to train the multi-layer perceptron neural network. The three layer neural network was used for the study and the optimum number of neurons in the first and second hidden layers were selected based on performances of each models. The best models were selected for the horn and then tested to see their performances on an unseen dataset. The neural network models for the longitudinal-torsional mode horn attained test accuracy of 90%. This result implies that proposed models has potential for the weld quality monitoring.