• Title/Summary/Keyword: Process and Die Design

Search Result 941, Processing Time 0.024 seconds

Reverse engineering of concentric plug cover by 3D scanning and development of injection mold (3D 스캔을 이용한 콘센트 커버의 역설계 및 금형 개발)

  • Kim, Dong-Wook;Choi, Young-Rock;Shin, Sang-Eun;Kim, Sei-Hwan;Choi, Kyu-Kwang;Han, Seong-Ryeol
    • Design & Manufacturing
    • /
    • v.9 no.1
    • /
    • pp.18-22
    • /
    • 2015
  • Mold making and product manufacturing process was made by a die through a number of stages. Thereby, it takes a long period of time from the manufacture of mold until passed the products to consumers. However, it is not possible to meet the diverse desires purchasing of consumer. We made a 3D CAD Model aligned with product scan data using reverse engineering. Utilizing thereafter flow analysis to derive the optimal mold conditions, by applying the condition, and devised a mold fabrication process that is much shorter than the conventional process for fabricating a mold. In this study, the outlet cover to the product, it describes a process, as a result, it was confirmed that the number of steps can be shortened much more than the conventional process.

  • PDF

A multi-field CAE analysis for die turning injection application of reservoir fluid tank (리저버 탱크의 Die Turning Injection 적용을 위한 Multi-field CAE 해석)

  • Lee, Sung-Hee
    • Design & Manufacturing
    • /
    • v.15 no.1
    • /
    • pp.66-71
    • /
    • 2021
  • In this study, die turning injection(DTI) mold design for manufacturing reservoir fluid tanks used for cooling in-vehicle batteries, inverters, and motors was conducted based on multi-field CAE. Part design, performance evaluation, and mold design of the reservoir fluid tank was performed. The frequency response characteristics through modal and harmonic response analysis to satisfy the automotive performance test items for the designed part were examined. Analysis of re-melting characteristics and structural analysis of the driving part for designing the rotating die of the DTI mold were performed. Part design was possible when the natural frequency performance value of 32Hz or higher was satisfied through finite element analysis, and the temperature distribution and deformation characteristics of the part after injection molding were found through the first injection molding analysis. In addition, it can be seen that the temperature change of the primary part greatly influences the re-melting characteristics during the secondary injection. The minimum force for driving the turning die of the designed mold was calculated through structural analysis. Hydraulic system design was possible. Finally, a precise and efficient DTI mold design for the reservoir fluid tank was possible through presented multi-field CAE process.

A Study on the Hot Extrusion Dies with $TiB_2$ Insert ($TiB_2$ 인서트를 체결한 열간압출 금형에 관한 연구)

  • Kwon H. H.;Lee J. R.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.106-109
    • /
    • 2001
  • The use of ceramic inserts in hot extrusion dies offers significant technical and economic advantages over other forms of manufacture. These potential benefits can however only be realized by optimal design of the tools so that the ceramic inserts are not subjected to stresses that lead to their premature failure. In this paper, process simulation and stress analysis are thus combined during the design, and a data exchange program has been developed that enables optimal design of the dies taking into account the elastic deflections generated in shrink fitting the die inserts and that caused by the stresses generated in the process. The stress analysis of the dies is used to determine the stress conditions on the ceramic insert by considering contact and interference effects under both mechanical and thermal loads. The results are compared with the experimental ones for verification.

  • PDF

Three-Dimensional Finite Element Analysis for Hollow Section Extrusion of the Underframe of a Railroad Vehicle Using Mismatching Refinement with Domain Decomposition (영역분할에 의한 격자세분화기법을 사용한 철도차량 마루부재 압출공정의 3차원 유한요소해석)

  • Park, K.;Lee, Y.K.;Yang, D.Y.;Lee, D.H.
    • Transactions of Materials Processing
    • /
    • v.9 no.4
    • /
    • pp.362-371
    • /
    • 2000
  • In order to reduce weight of a high-speed railroad vehicle, the main body has been manufactured by hollow section extrusion using aluminum alloys. A porthole die has utilized for the hollow section extrusion process, which causes complicated die geometry and flow characteristics. Design of porthole die is very difficult due to such a complexity. The three-dimensional finite element analysis for hollow section is also an arduous job from the viewpoint of appropriate mesh construction and tremendous computation time. In the present work, mismatching refinement, an efficient domain decomposition method with different mesh density for each subdomain, is implemented for the analysis of the hollow section extrusion process. In addition, a modified grid-based approach with the surface element layer is utilized lot three-dimensional mesh generation of a complicated shape with hexahedral elements. The effects of porthole design are discussed through the simulation for extrusion of an underframe part of a railroad vehicle. An experiment has also been carried out for the comparison. Comparing the velocity distribution at the outlet with the thickness variation of the extruded part, it is concluded that the analysis results can provide reliable measures whether the die design is acceptable to obtain uniform part thickness. The analysis results are then successfully reflected on the industrial porthole die design.

  • PDF

Design of the Bead Force and Die Shape in Sheet Metal Forming Processes Using a Rigid-plastic Finite Element Method and Response Surface Methodology (강소성 유한요소법과 반응표면분석법을 이용한 박판성헝 공정에서의 비드력 및 다이형상의 설계)

  • Kim, S.H.;Huh, H.
    • Transactions of Materials Processing
    • /
    • v.9 no.3
    • /
    • pp.284-292
    • /
    • 2000
  • Optimization of the process parameters is carried out for process design in sheet metal forming processes. The scheme incorporates with a rigid-plastic finite element method for the deformation analysis and response surface methodology for the optimum searching of process parameters. The algorithm developed is applied to design of the draw bead force and the die radius in deep drawing processes of rectangular cups. The present algorithm shows the capability of designing process parameters which enable the prevention of the weak part of fracture during processes.

  • PDF

Development of a CAE Tool for P/M Compaction Process and Its Application (금형압축성형공정 해석용 CAE 프로그램 개발 및 적용)

  • Chung Suk-Hwan;Kwon Young-Sam
    • Journal of Powder Materials
    • /
    • v.11 no.5
    • /
    • pp.399-411
    • /
    • 2004
  • Crack generation during die compaction and distortion during sintering have been critical problems for the conventional pressing and sintering process. Until now, trial and error approach with engineers' industrial experiences has been only solution to protect the crack generation and distortion. However, with complexity in shape and process it is very difficult to design process conditions without CAE analysis. We developed the exclusive CAE software (PMsolver/Compaction) for die compaction process. The accuracy of PMsolver is verified by comparing the finite element simulation results with experimental results. The simplified procedures to find material properties are proposed and verified with iron based powder and tungsten carbide powder. Based on the accurate simulation result by PMsolver, the optimal process conditions are designed to get uniform density distribution in a powder compact after die compaction process by using a derivative based optimization scheme. In addition, the effect of non-uniform density distribution in a powder compact on distortion during sintering is shown in case of the fabrication of tungsten carbide insert.

Analytical Considerations on Some Design Parameters of Flat-Die Extrusion Processes (평금형 압출공정 설계 인자에 대한 해석적 고찰)

  • Lee C. H.;Yang D. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.98-101
    • /
    • 2001
  • In the present study, several design parameters of the flat-die extrusion process are investigated using the rigid-plastic finite element method. The effect of loaction of extrusion profile, arrangement of multiple extrusion profiles, and design of various die land has been investigated through the analysis. Several numerical examples of flat-die extrusion, such as C-section, multiple U- shape, and window guide extrusion, are analyzed. From the comparative study, the effect of design parameters is investigated. In each example, comparing the velocity distribution with that of the original design, it has been shown that the design modification affords much more uniform distribution of axial velocity

  • PDF

The Analytical Consideration for Several Design Parameters of Flat-Die Extrusion Processes (평금형 압출공정 설계 인자에 대한 해석적 고찰)

  • 이창희;양동열
    • Transactions of Materials Processing
    • /
    • v.10 no.7
    • /
    • pp.551-557
    • /
    • 2001
  • In the present study, several design parameters of the flat-die extrusion process are investigated using the finite element method. The effects of the location of an extrusion profile, arrangement of multiple extrusion profiles, and the design of various die land have been investigated through the analysis. Several numerical examples of flat-die extrusion of such as C-section, multiple U-shape, and a window guide section, are analyzed. From the comparative study, the effect of design parameters is investigated. In each example, comparing the velocity distribution with that of the original design, it has been shown that the design modification affords more uniform distribution.

  • PDF

Plate Forging Process Design for an Under-drive Brake Piston in Automatic Transmission (자동변속기용 언더드라이브 브레이크 피스톤의 판 단조공정 개선 방안)

  • Jeon, H.W.;Yoon, J.H.;Lee, J.H.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.23 no.2
    • /
    • pp.88-94
    • /
    • 2014
  • The under-drive brake piston is an essential part in the automatic transmissions of automobiles. This component is manufactured by forging after blanking from S55C plate with a thickness of 6mm. It is difficult to design the plate forging process using a thick plate approach since there will be limited material flow as well as large press loads. Furthermore, the under-drive brake piston has a complex shape with a right angle step, which often results in die unfill and abrupt increase in press load. To overcome these obstacles, a separate die for filling material sufficiently to the corner of the right angle step is proposed. However, this approach induces an uncontrolled workpiece surface between the dies, resulting in flash. This excess flash degrades the tool life in the final machining after cold forging as well as increases the cycle time to obtain the net-shape of the part. In the current study, we propose an optimum process design using a conventional die shaped with the benefit of finite element analysis. This approach enhanced the process efficiency without sacrificing the dimensional accuracy in the forged part. As the result, the optimum plate forging process was done with a two stage die, which reduces weight of by 6% compared with previous process for the under-drive brake piston.

A Study on The Design of Prestressed Die for Spur Gear Forging (스퍼기어 단조용 예압된 금형의 설계에 관한 연구)

  • 허관도;여홍태;송요선
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.19-22
    • /
    • 2003
  • In this study, the design of prestressed die for spur gear forging have been investigated. The stress concentration at notch of the die insert is very important in the design of die for the forging of spur gear such as non-axisymmetric geometry. In the previous study, the flexible tolerance method was used in order to search the optimal value of design variables considering the constrain conditions. In the design process, it was also involved the safety factor to the yield strength of each ring by considering allowable tensile or compressive hoop stress in each ring. Using this technique, the die deign for spur gear forging has been successfully performed without yielding of the die after shrink fitting and during forging.

  • PDF