• Title/Summary/Keyword: Process Variable Prediction

Search Result 139, Processing Time 0.024 seconds

Quality Variable Prediction for Dynamic Process Based on Adaptive Principal Component Regression with Selective Integration of Multiple Local Models

  • Tian, Ying;Zhu, Yuting
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.4
    • /
    • pp.1193-1215
    • /
    • 2021
  • The measurement of the key product quality index plays an important role in improving the production efficiency and ensuring the safety of the enterprise. Since the actual working conditions and parameters will inevitably change to some extent with time, such as drift of working point, wear of equipment and temperature change, etc., these will lead to the degradation of the quality variable prediction model. To deal with this problem, the selective integrated moving windows based principal component regression (SIMV-PCR) is proposed in this study. In the algorithm of traditional moving window, only the latest local process information is used, and the global process information will not be enough. In order to make full use of the process information contained in the past windows, a set of local models with differences are selected through hypothesis testing theory. The significance levels of both T - test and χ2 - test are used to judge whether there is identity between two local models. Then the models are integrated by Bayesian quality estimation to improve the accuracy of quality variable prediction. The effectiveness of the proposed adaptive soft measurement method is verified by a numerical example and a practical industrial process.

Gradient Descent Training Method for Optimizing Data Prediction Models (데이터 예측 모델 최적화를 위한 경사하강법 교육 방법)

  • Hur, Kyeong
    • Journal of Practical Engineering Education
    • /
    • v.14 no.2
    • /
    • pp.305-312
    • /
    • 2022
  • In this paper, we focused on training to create and optimize a basic data prediction model. And we proposed a gradient descent training method of machine learning that is widely used to optimize data prediction models. It visually shows the entire operation process of gradient descent used in the process of optimizing parameter values required for data prediction models by applying the differential method and teaches the effective use of mathematical differentiation in machine learning. In order to visually explain the entire operation process of gradient descent, we implement gradient descent SW in a spreadsheet. In this paper, first, a two-variable gradient descent training method is presented, and the accuracy of the two-variable data prediction model is verified by comparison with the error least squares method. Second, a three-variable gradient descent training method is presented and the accuracy of a three-variable data prediction model is verified. Afterwards, the direction of the optimization practice for gradient descent was presented, and the educational effect of the proposed gradient descent method was analyzed through the results of satisfaction with education for non-majors.

Bankruptcy Prediction Model with AR process (AR 프로세스를 이용한 도산예측모형)

  • 이군희;지용희
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.26 no.1
    • /
    • pp.109-116
    • /
    • 2001
  • The detection of corporate failures is a subject that has been particularly amenable to cross-sectional financial ratio analysis. In most of firms, however, the financial data are available over past years. Because of this, a model utilizing these longitudinal data could provide useful information on the prediction of bankruptcy. To correctly reflect the longitudinal and firm-specific data, the generalized linear model with assuming the first order AR(autoregressive) process is proposed. The method is motivated by the clinical research that several characteristics are measured repeatedly from individual over the time. The model is compared with several other predictive models to evaluate the performance. By using the financial data from manufacturing corporations in the Korea Stock Exchange (KSE) list, we will discuss some experiences learned from the procedure of sampling scheme, variable transformation, imputation, variable selection, and model evaluation. Finally, implications of the model with repeated measurement and future direction of research will be discussed.

  • PDF

Variable Selection with Regression Trees

  • Chang, Young-Jae
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.2
    • /
    • pp.357-366
    • /
    • 2010
  • Many tree algorithms have been developed for regression problems. Although they are regarded as good algorithms, most of them suffer from loss of prediction accuracy when there are many noise variables. To handle this problem, we propose the multi-step GUIDE, which is a regression tree algorithm with a variable selection process. The multi-step GUIDE performs better than some of the well-known algorithms such as Random Forest and MARS. The results based on simulation study shows that the multi-step GUIDE outperforms other algorithms in terms of variable selection and prediction accuracy. It generally selects the important variables correctly with relatively few noise variables and eventually gives good prediction accuracy.

Relationship among Degree of Time-delay, Input Variables, and Model Predictability in the Development Process of Non-linear Ecological Model in a River Ecosystem (비선형 시계열 하천생태모형 개발과정 중 시간지연단계와 입력변수, 모형 예측성 간 관계평가)

  • Jeong, Kwang-Seuk;Kim, Dong-Kyun;Yoon, Ju-Duk;La, Geung-Hwan;Kim, Hyun-Woo;Joo, Gea-Jae
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.1
    • /
    • pp.161-167
    • /
    • 2010
  • In this study, we implemented an experimental approach of ecological model development in order to emphasize the importance of input variable selection with respect to time-delayed arrangement between input and output variables. Time-series modeling requires relevant input variable selection for the prediction of a specific output variable (e.g. density of a species). Inadequate variable utility for input often causes increase of model construction time and low efficiency of developed model when applied to real world representation. Therefore, for future prediction, researchers have to decide number of time-delay (e.g. months, weeks or days; t-n) to predict a certain phenomenon at current time t. We prepared a total of 3,900 equation models produced by Time-Series Optimized Genetic Programming (TSOGP) algorithm, for the prediction of monthly averaged density of a potamic phytoplankton species Stephanodiscus hantzschii, considering future prediction from 0- (no future prediction) to 12-months ahead (interval by 1 month; 300 equations per each month-delay). From the investigation of model structure, input variable selectivity was obviously affected by the time-delay arrangement, and the model predictability was related with the type of input variables. From the results, we can conclude that, although Machine Learning (ML) algorithms which have popularly been used in Ecological Informatics (EI) provide high performance in future prediction of ecological entities, the efficiency of models would be lowered unless relevant input variables are selectively used.

Methodology for Variable Optimization in Injection Molding Process (사출 성형 공정에서의 변수 최적화 방법론)

  • Jung, Young Jin;Kang, Tae Ho;Park, Jeong In;Cho, Joong Yeon;Hong, Ji Soo;Kang, Sung Woo
    • Journal of Korean Society for Quality Management
    • /
    • v.52 no.1
    • /
    • pp.43-56
    • /
    • 2024
  • Purpose: The injection molding process, crucial for plastic shaping, encounters difficulties in sustaining product quality when replacing injection machines. Variations in machine types and outputs between different production lines or factories increase the risk of quality deterioration. In response, the study aims to develop a system that optimally adjusts conditions during the replacement of injection machines linked to molds. Methods: Utilizing a dataset of 12 injection process variables and 52 corresponding sensor variables, a predictive model is crafted using Decision Tree, Random Forest, and XGBoost. Model evaluation is conducted using an 80% training data and a 20% test data split. The dependent variable, classified into five characteristics based on temperature and pressure, guides the prediction model. Bayesian optimization, integrated into the selected model, determines optimal values for process variables during the replacement of injection machines. The iterative convergence of sensor prediction values to the optimum range is visually confirmed, aligning them with the target range. Experimental results validate the proposed approach. Results: Post-experiment analysis indicates the superiority of the XGBoost model across all five characteristics, achieving a combined high performance of 0.81 and a Mean Absolute Error (MAE) of 0.77. The study introduces a method for optimizing initial conditions in the injection process during machine replacement, utilizing Bayesian optimization. This streamlined approach reduces both time and costs, thereby enhancing process efficiency. Conclusion: This research contributes practical insights to the optimization literature, offering valuable guidance for industries seeking streamlined and cost-effective methods for machine replacement in injection molding.

Development of Process Analysis and Prediction Systeme to Improve Yield in Plasma Etching Process Using Adaptively Trained Neural Network (적응 훈련 신경망을 이용한 플라즈마 식각 공정 수율 향상을 위한 공정 분석 및예측 시스템 개발)

  • Choi, Mun-Kyu;Kim, Hun-Mo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.11
    • /
    • pp.98-105
    • /
    • 1999
  • As the IC(Integrated Circuit) has been densified and complicated, it is required to thorough process control to improve yield. Experts, for this purpose, focused on the process analysis automation, which is came from the strict data management in semiconductor manufacturing. In this paper, we presents the process analysis system that can analyze causes, for a output after processes. Also, the plasma etching process that highly affects yield among semiconductor process is modeled to predict a output before the process. To approach this problem, we use adaptively trained neural networks that exhibit superior accuracy over statistical techniques. And in comparison with methods in other paper, a method that history of trend for input data is considered is shown to offer advantage in both learning and prediction capability. This research regards CD(Critical Dimension) that is considerable in high integrated circuit as output variable of the prediction model.

  • PDF

A Unit Selection Methods using Variable Break in a Japanese TTS (일본어 TTS의 가변 Break를 이용한 합성단위 선택 방법)

  • Na, Deok-Su;Bae, Myung-Jin
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.983-984
    • /
    • 2008
  • This paper proposes a variable break that can offset prediction error as well as a pre-selection methods, based on the variable break, for enhanced unit selection. In Japanese, a sentence consists of several APs (Accentual phrases) and MPs (Major phrases), and the breaks between these phrases must predicted to realize text-to-speech systems. An MP also consists of several APs and plays a decisive role in making synthetic speech natural and understandable because short pauses appear at its boundary. The variable break is defined as a break that is able to change easily from an AP to an MP boundary, or from an MP to an AP boundary. Using CART (Classification and Regression Trees), the variable break is modeled stochastically, and then we pre-select candidate units in the unit-selection process. As the experimental results show, it was possible to complement a break prediction error and improve the naturalness of synthetic speech.

  • PDF

Proper Arc Welding Condition Derivation of Auto-body Steel by Artificial Neural Network (신경망 알고리즘을 이용한 차체용 강판 아크 용접 조건 도출)

  • Cho, Jungho
    • Journal of Welding and Joining
    • /
    • v.32 no.2
    • /
    • pp.43-47
    • /
    • 2014
  • Famous artificial neural network (ANN) is applied to predict proper process window of arc welding. Target weldment is variously combined lap joint fillet welding of automotive steel plates. ANN's system variable such as number of hidden layers, perceptrons and transfer function are carefully selected through case by case test. Input variables are welding condition and steel plate combination, for example, welding machine type, shield gas composition, current, speed and strength, thickness of base material. The number of each input variable referred in welding experiment is counted and provided to make it possible to presume the qualitative precision and limit of prediction. One of experimental process windows is excluded for predictability estimation and the rest are applied for neural network training. As expected from basic ANN theory, experimental condition composed of frequently referred input variables showed relatively more precise prediction while rarely referred set showed poorer result. As conclusion, application of ANN to arc welding process window derivation showed comparatively practical feasibility while it still needs more training for higher precision.

On-line Prediction Algorithm for Non-stationary VBR Traffic (Non-stationary VBR 트래픽을 위한 동적 데이타 크기 예측 알고리즘)

  • Kang, Sung-Joo;Won, You-Jip;Seong, Byeong-Chan
    • Journal of KIISE:Information Networking
    • /
    • v.34 no.3
    • /
    • pp.156-167
    • /
    • 2007
  • In this paper, we develop the model based prediction algorithm for Variable-Bit-Rate(VBR) video traffic with regular Group of Picture(GOP) pattern. We use multiplicative ARIMA process called GOP ARIMA (ARIMA for Group Of Pictures) as a base stochastic model. Kalman Filter based prediction algorithm consists of two process: GOP ARIMA modeling and prediction. In performance study, we produce three video traces (news, drama, sports) and we compare the accuracy of three different prediction schemes: Kalman Filter based prediction, linear prediction, and double exponential smoothing. The proposed prediction algorithm yields superior prediction accuracy than the other two. We also show that confidence interval analysis can effectively detect scene changes of the sample video sequence. The Kalman filter based prediction algorithm proposed in this work makes significant contributions to various aspects of network traffic engineering and resource allocation.