• Title/Summary/Keyword: Process Value Analysis

Search Result 3,006, Processing Time 0.036 seconds

Development of an Explanatory Model for Decision of Fashion Style and Its Diffusion Process Based on Ambivalence of Pursuit Values (유행 스타일의 결정과 확산에 대한 설명모형 연구 -추구가치의 양면성을 중심으로-)

  • 김선숙;이은영
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.19 no.4
    • /
    • pp.637-650
    • /
    • 1995
  • The purpose of the study was to develop a model to explain how a fashion style is determined within a society and how the style diffuses. The research was carried out in two stages, theoretical study followed by empirical study. In the theoretical study, explanatory model about decision of fashion style and diffusion was developed and then fashion diffusion theories and fashion phenomenon of postholder society were explained by the model developed. The theoretical framework of the explanatory model was constructed in that fashion changes by ambivalence of pursuit values within an individual as well as within a society. The empirical study was carried out to validate the model by looking into fashion phenomenon in the postmodern society A questionnaire was developed including style image, pursuit value, preference style and administered to 19 to 30 year-old women living in Seoul area. Frequency distribution, discriminant analysis, one-way ANOVA. were used for the statistical analysis. As pursuit values differed in each style preference stoup, and pursuit value coincided with image of preference style it was confirmed that clothing selection behavior was determined by pursuit value. In a postmodern society where variety of values are pursued, appearance of various products and preference of all styles altogether considered, it could assume that subcultural collective selection phenomenon appeared.

  • PDF

Design wind speed prediction suitable for different parent sample distributions

  • Zhao, Lin;Hu, Xiaonong;Ge, Yaojun
    • Wind and Structures
    • /
    • v.33 no.6
    • /
    • pp.423-435
    • /
    • 2021
  • Although existing algorithms can predict wind speed using historical observation data, for engineering feasibility, most use moment methods and probability density functions to estimate fitted parameters. However, extreme wind speed prediction accuracy for long-term return periods is not always dependent on how the optimized frequency distribution curves are obtained; long-term return periods emphasize general distribution effects rather than marginal distributions, which are closely related to potential extreme values. Moreover, there are different wind speed parent sample types; how to theoretically select the proper extreme value distribution is uncertain. The influence of different sampling time intervals has not been evaluated in the fitting process. To overcome these shortcomings, updated steps are introduced, involving parameter sensitivity analysis for different sampling time intervals. The extreme value prediction accuracy of unknown parent samples is also discussed. Probability analysis of mean wind is combined with estimation of the probability plot correlation coefficient and the maximum likelihood method; an iterative estimation algorithm is proposed. With the updated steps and comparison using a Monte Carlo simulation, a fitting policy suitable for different parent distributions is proposed; its feasibility is demonstrated in extreme wind speed evaluations at Longhua and Chuansha meteorological stations in Shanghai, China.

Analysis for Roll Forming Process to Levitation Rail of Urban Maglev System (도시형 자기부상열차 부상레일의 롤 성형공정 해석)

  • Kim, Kyung-Taek;Kim, Jae-Yong;Kim, Yong-Hwan;Park, Jin-Soo;Pyen, Sang-Yun
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.31-38
    • /
    • 2008
  • This Study discussed the roll forming process analysis of levitation rail for urban Maglev vehicle. To verify validity of roll forming process, we analyzed roll forming process for track shoe which is similar to levitation rail. The analysis process was composed of 12 passes and was performed for only 8 passes except overlapping passes. In the variation of temperature with each pass, surface temperature of the structure was cooled from initial $1200^{\circ}C$ to $1010^{\circ}C$ during 30 second before first pass, and central temperature and surface temperature was cooled to $980^{\circ}C$ and $900^{\circ}C$ in final pass, respectively. A length of structure after final pass is about 5 times longer than that before roll forming process. A strain of structure had a higher value in the inner part of the track shoe and show from minimum 2.5 to maximum 6.5. A torque applying on roll appear high in 2, 3 and 4 passes and a maximum value was $27,000ton{\cdot}mm$. Also it was analyzed that a load to the normal direction needs maximum 300ton.

  • PDF

Development of the Evaluation Model for the Quantitative Analysis of Local Agenda 21 (지방의제 21의 정량적 분석을 위한 평가모델의 개발)

  • Woo, Hyung-Taek
    • Journal of Environmental Science International
    • /
    • v.15 no.12
    • /
    • pp.1205-1220
    • /
    • 2006
  • This study was conducted to develop the evaluation model which can analyse local agenda 21 comprehensively and systematically from the making process to the designed contents. The evaluation model was devised through the theoretical review of local agenda 21 and designing the evaluation system composed of evaluation domains, related indicators and scales. The evaluation system was carefully constructed based on planning theories and the discussion and agreement of specialists regarding local agenda 21. This model has three evaluation domains of process, content, and evaluation of implementation with different weighting values. Each domain contains large indicators, medium indicators and small indicators. Each indicator has different weighting value according to its importance. Basically, each small indicator was scored by 3 or 5 point scale. This evaluation system can not only analyse local agenda 21 quantitatively, but also find out good points, problems, and limits of various phases of planning and implementing local agenda 21.

Evaluation and Design of Ultrasonic Vibrator for Dental Surgery (치과용 골 수술기의 초음파 진동자 설계 및 평가)

  • Park, Ki-Moon;Kim, Jung-Hyun;Ko, Tae Jo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.3
    • /
    • pp.102-108
    • /
    • 2016
  • A dental ultrasonic surgical instrument, commercially known as a scaler, is a high-value-added advanced technology that is used for tartar removal, implant operations, and gum and jaw bone surgery. In this study, the piezoelectric phenomenon for making linear motion associated with input electrical signals was studied, and the behavior of the ultrasonic vibrator was investigated by using the commercially available finite element program ANSYS(R) for the purpose of designing dental surgery tools. Modal analysis was carried out, and the optimal frequency range was calculated from the analyzed results. The ultrasonic vibrator was then redesigned based on the calculated optimal frequency range. The performance of the system was tested, and consequently, the proposed methodology was proven useful in vibrator design.

Optimum shape and process design of single rotor equipment for its mixing performance using finite volume method

  • Kim, Nak-Soo;Lee, Jae-Yeol
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.4
    • /
    • pp.289-297
    • /
    • 2009
  • We numerically analyzed flow characteristics of the polymer melt in the screw equipment using a proper modeling and investigated design parameters which have influence on the mixing performance as the capability of the screw equipment. We considered the non-Newtonian and non-isothermal flow in a single rotor equipment to investigate the mixing performance with respect to screw dimensions as shape parameter of the single rotor equipment and screw speed as process parameter. We used Bird-Carreau-Yasuda model as a viscous model of the polymer melt and the particle tracking method to investigate the mixing performance in the screw equipment and considered four mixing performance indexes: residence time distribution, deformation rate, total strain and particle standard deviation as a new mixing performance index. We compared these indexes to determine design parameters and object function. On basis of the analysis results, we carried out the optimal design by using the response surface method and design of experiments. In conclusion, the differences of results between the optimal value and numerical analysis are about 5.0%.

Development of Electrical and Oil Heater for Energy Saving (에너지 절감형 전기 유류 겸용 온풍기 개발)

  • Chung, Sung-Won;Kim, Dong-Keon;Gong, Sang-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.5
    • /
    • pp.38-43
    • /
    • 2011
  • This study was carried out to evaluate the structural stability of hybrid type fan heater. The evaluation of structural safety of hybrid fan heater was conducted by using Ansys Workbench and CFX-11 under the design condition. The hybrid fan heater was operated by heat transfer for heat source supplied from electric heater and combustion gas. According to result of structural analysis, the maximum equivalent stress of hybrid fan heater was 150MPa when the temperature of heat transfer fluids was $150^{\circ}C$. It was found that the hybrid fan was structurally safe because the value of maximum equivalent stress was smaller than that of yield stress of the material.

Optimal Design of Dual-Structured Disc of a Safety-Valve for the Specialized Pressure Vessel Considering Thermal Expansion (특수 압력요기용 안전밸브의 2중 구조로 디스크의 최적설계)

  • Kim, Chang-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.4
    • /
    • pp.81-85
    • /
    • 2007
  • A safety valve is used for protecting the pressure vessel and facilities by discharging the operating fluid into the valve from the accident when the pressure is over the designated value. The fluid is sulfurous acid and nitric acid. etc. in the semi-conductor assembly line. Thus the valve elements material must be acid resistance. Teflon, which is used generally as inner parts of a valve, tends to easily sticks to sliding surface by thermal expansion under high temperature. Some studies are performed to change teflon to another material and shape to have a better fluidity under the condition. The analysis of the thermal expansion is conducted by commercial FEM software to improve the problems. Boundary conditions were temperature and load in this study. From the analysis, the thermal expansion of stainless steel is verified to be lower than that of teflon under high temperature. Thus coupled teflon/stainless steel-made valve is applied to assembly line without danger due to thermal expansion.

  • PDF

A Study on Aerodynamic Analysis and Design of Wind Turbine Blade (풍력터빈용 날개 설계 및 공력해석에 관한 연구)

  • 김정환;이영호;최민선
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.5
    • /
    • pp.847-852
    • /
    • 2004
  • The wind turbine blade is the equipment converted wind into electric energy. The effect of the blade has influence of the output power and efficiency of wind turbine. The design of blade is considered of lift-to-drag ratio. structure. a condition of process of manufacture and stable maximum lift coefficient, etc. This study is used the simplified method for design of the aerodynamic blade and aerodynamic analysis used blade element method This Process is programed by delphi-language. The Program has any input values such as tip speed ratio blade length. hub length. a section of shape and max lift-to-drag ratio. The Program displays chord length and twist angle by input value and analyzes performance of the blade.

Durability Analysis due to Design Shape of Pinion Gear (자동차용 피니언 기어의 설계 형상에 따른 내구성 해석)

  • Choi, Kyekwang;Cho, Jaeung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.7
    • /
    • pp.16-21
    • /
    • 2020
  • The structural analyses were conducted with three models of pinion gears connected to the rack gear which is driven by the steering axle at an automobile. Three models 1, 2 and 3 are designed as the different pinion gears due to the vehicle type. The lower the value of maximum stress, the better the durability of model. Model 3 has the best durability among three models. Models 1 and 2 are expected to require the adjustment in order to improve the durability better. By the utilization of this study result, it is thought to apply at designing the pinion gear with durability at the automobile.