• Title/Summary/Keyword: Process Prediction

Search Result 3,161, Processing Time 0.03 seconds

Defect Prediction Using Machine Learning Algorithm in Semiconductor Test Process (기계학습 알고리즘을 이용한 반도체 테스트공정의 불량 예측)

  • Jang, Suyeol;Jo, Mansik;Cho, Seulki;Moon, Byungmoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.7
    • /
    • pp.450-454
    • /
    • 2018
  • Because of the rapidly changing environment and high uncertainties, the semiconductor industry is in need of appropriate forecasting technology. In particular, both the cost and time in the test process are increasing because the process becomes complicated and there are more factors to consider. In this paper, we propose a prediction model that predicts a final "good" or "bad" on the basis of preconditioning test data generated in the semiconductor test process. The proposed prediction model solves the classification and regression problems that are often dealt with in the semiconductor process and constructs a reliable prediction model. We also implemented a prediction model through various machine learning algorithms. We compared the performance of the prediction models constructed through each algorithm. Actual data of the semiconductor test process was used for accurate prediction model construction and effective test verification.

Springback Prediction of Tailor Rolled Blank in Hot Stamping Process by Partial Heating (국부가열을 이용한 핫스탬핑 공정에서 Tailor Rolled Blank의 스프링백 예측)

  • Shim, G.H.;Kim, J.H.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.25 no.6
    • /
    • pp.396-401
    • /
    • 2016
  • Recently, Multi-strength hot stamping process has been widely used to achieve lightweight and crashworthiness in automotive industry. In concept of multi-strength hot stamping process, process design of tailor rolled blank(TRB) in partial heating is difficult because of thickness and temperature variation of blank. In this study, springback prediction of TRB in partial heating process was performed considering its thickness and temperature variation. In partial heating process, TRB was heated up to $900^{\circ}C$ for thicker side and below $Ac_3$ transformation temperature for thinner side, respectively. Johnson-Mehl-Avrami-Kolmogorov(JMAK) equation was applied to calculate austenite fraction according to heating temperature. Calculated austenite fraction was applied to FE-simulation for the prediction of springback. Experiment for partial heating process of TRB was also performed to verify prediction accuracy of FE-simulation coupled with JMAK equation.

Development of Prediction Model for Root Industry Production Process Using Artificial Neural Network (인공신경망을 이용한 뿌리산업 생산공정 예측 모델 개발)

  • Bak, Chanbeom;Son, Hungsun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.1
    • /
    • pp.23-27
    • /
    • 2017
  • This paper aims to develop a prediction model for the product quality of a casting process. Prediction of the product quality utilizes an artificial neural network (ANN) in order to renovate the manufacturing technology of the root industry. Various aspects of the research on the prediction algorithm for the casting process using an ANN have been investigated. First, the key process parameters have been selected by means of a statistics analysis of the process data. Then, the optimal number of the layers and neurons in the ANN structure is established. Next, feed-forward back propagation and the Levenberg-Marquardt algorithm are selected to be used for training. Simulation of the predicted product quality shows that the prediction is accurate. Finally, the proposed method shows that use of the ANN can be an effective tool for predicting the results of the casting process.

A TBM tunnel collapse risk prediction model based on AHP and normal cloud model

  • Wang, Peng;Xue, Yiguo;Su, Maoxin;Qiu, Daohong;Li, Guangkun
    • Geomechanics and Engineering
    • /
    • v.30 no.5
    • /
    • pp.413-422
    • /
    • 2022
  • TBM is widely used in the construction of various underground projects in the current world, and has the unique advantages that cannot be compared with traditional excavation methods. However, due to the high cost of TBM, the damage is even greater when geological disasters such as collapse occur during excavation. At present, there is still a shortage of research on various types of risk prediction of TBM tunnel, and accurate and reliable risk prediction model is an important theoretical basis for timely risk avoidance during construction. In this paper, a prediction model is proposed to evaluate the risk level of tunnel collapse by establishing a reasonable risk index system, using analytic hierarchy process to determine the index weight, and using the normal cloud model theory. At the same time, the traditional analytic hierarchy process is improved and optimized to ensure the objectivity of the weight values of the indicators in the prediction process, and the qualitative indicators are quantified so that they can directly participate in the process of risk prediction calculation. Through the practical engineering application, the feasibility and accuracy of the method are verified, and further optimization can be analyzed and discussed.

The development and application of on-line model for the prediction of roll force in hot strip rolling (얼간 사상 압연중 압하력 예측 모델 개발 및 적용)

  • Lee J. H.;Choi J. W.;Kwak W. J.;Hwang S. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.175-183
    • /
    • 2004
  • In hot strip rolling, a capability for precisely predicting roll force is crucial for sound process control. In the past, on-line prediction models have been developed mostly on the basis of Orowan's theory and its variation. However, the range of process conditions in which desired prediction accuracy could be achieved was rather limited, mainly due to many simplifying assumptions inherent to Orowan's theory. As far as the prediction accuracy is concerned, a rigorously formulated finite element(FE) process model is perhaps the best choice. However, a FE process model in general requires a large CPU time, rendering itself inadequate for on-line purpose. In this report, we present a FE-based on-line prediction model applicable to precision process control in a finishing mill(FM). Described was an integrated FE process model capable of revealing the detailed aspects of the thermo-mechanical behavior of the roll-strip system. Using the FE process model, a series of process simulation was conducted to investigate the effect of diverse process variables on some selected non-dimensional parameters characterizing the thermo-mechanical behavior of the strip. Then, it was shown that an on-line model for the prediction of roll force could be derived on the basis of these parameters. The prediction accuracy of the proposed model was examined through comparison with measurements from the hot strip mill.

  • PDF

Analysis of the Basic Inquiry Process in Korean Science Textbooks: Focused on Classification, Prediction and Reasoning (우리나라 과학 교과서에 나타난 기초 탐구 과정 분석: 분류, 예상 및 추리 탐구 요소를 중심으로)

  • Kim, Hee-Kyong;Park, Bo-Hwa;Lee, Bong-Woo
    • Journal of Korean Elementary Science Education
    • /
    • v.26 no.5
    • /
    • pp.499-508
    • /
    • 2007
  • The purpose of this study was to examine the features of the standards of classification, prediction and reasoning in foreign national science standards and the characteristics of these inquiry processes in the Korean science textbooks. The inquiry process of classification was found less frequently rather than observation and measurement. 'The classification of one character' was much more contained than the higher level of classification, 'the classification of composit character'. For the inquiry process of prediction, most of prediction was 'prediction from experiment result'. In the level of prediction, 'basic prediction' was found more frequently than 'operation prediction'. The inquiry process of reasoning was found more frequently than classification and prediction and was increased in the higher grade textbooks. In the level of reasoning, the higher grade textbooks included 'secondary reasoning' rather than 'simple reasoning'.

  • PDF

FE-based On-Line Model for the Prediction of Roll Force and Roll Power in Finishing Mill (II) Effect of Tension (유한요소법에 기초한 박판에서의 압하력 및 압연동력 정밀 예측 On-Line모델 (II) 장력의 영향)

  • KWAK W. J.;KIM Y. H.;PARK H. D.;LEE J. H.;HWANG S. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.121-124
    • /
    • 2001
  • On-line prediction model which calculate roll force, roll power and forward slip of continuous hot strip rolling was built based on the results of plane strait rigid-viscoplastic finite element process model. Using the integrated FE process model, a series of finite element simulation was conducted over the process variables, and the influence of various process conditions on non-dimensional parameters was inspected. The prediction accuracy of the proposed on-line model under front and back tension is examined through comparison with predictions from a finite element process model over the various process conditions. In addition, we examined the validity of the on-line prediction model through comparison with roll force of experiment in hot rolling.

  • PDF

Defect Type Prediction Method in Manufacturing Process Using Data Mining Technique (데이터마이닝 기법을 이용한 제조 공정내의 불량항목별 예측방법)

  • Byeon Sung-Kyu;Kang Chang-Wook;Sim Seong-Bo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.27 no.2
    • /
    • pp.10-16
    • /
    • 2004
  • Data mining technique is the exploration and analysis, by automatic or semiautomatic means, of large quantities of data in order to discover meaningful patterns and rules. This paper uses a data mining technique for the prediction of defect types in manufacturing Process. The Purpose of this Paper is to model the recognition of defect type Patterns and Prediction of each defect type before it occurs in manufacturing process. The proposed model consists of data handling, defect type analysis, and defect type prediction stages. The performance measurement shows that it is higher in prediction accuracy than logistic regression model.

Application and evaluation for effluent water quality prediction using artificial intelligence model (방류수질 예측을 위한 AI 모델 적용 및 평가)

  • Mincheol Kim;Youngho Park;Kwangtae You;Jongrack Kim
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.38 no.1
    • /
    • pp.1-15
    • /
    • 2024
  • Occurrence of process environment changes, such as influent load variances and process condition changes, can reduce treatment efficiency, increasing effluent water quality. In order to prevent exceeding effluent standards, it is necessary to manage effluent water quality based on process operation data including influent and process condition before exceeding occur. Accordingly, the development of the effluent water quality prediction system and the application of technology to wastewater treatment processes are getting attention. Therefore, in this study, through the multi-channel measuring instruments in the bio-reactor and smart multi-item water quality sensors (location in bio-reactor influent/effluent) were installed in The Seonam water recycling center #2 treatment plant series 3, it was collected water quality data centering around COD, T-N. Using the collected data, the artificial intelligence-based effluent quality prediction model was developed, and relative errors were compared with effluent TMS measurement data. Through relative error comparison, the applicability of the artificial intelligence-based effluent water quality prediction model in wastewater treatment process was reviewed.

Development of Process Analysis and Prediction Systeme to Improve Yield in Plasma Etching Process Using Adaptively Trained Neural Network (적응 훈련 신경망을 이용한 플라즈마 식각 공정 수율 향상을 위한 공정 분석 및예측 시스템 개발)

  • Choi, Mun-Kyu;Kim, Hun-Mo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.11
    • /
    • pp.98-105
    • /
    • 1999
  • As the IC(Integrated Circuit) has been densified and complicated, it is required to thorough process control to improve yield. Experts, for this purpose, focused on the process analysis automation, which is came from the strict data management in semiconductor manufacturing. In this paper, we presents the process analysis system that can analyze causes, for a output after processes. Also, the plasma etching process that highly affects yield among semiconductor process is modeled to predict a output before the process. To approach this problem, we use adaptively trained neural networks that exhibit superior accuracy over statistical techniques. And in comparison with methods in other paper, a method that history of trend for input data is considered is shown to offer advantage in both learning and prediction capability. This research regards CD(Critical Dimension) that is considerable in high integrated circuit as output variable of the prediction model.

  • PDF