• Title/Summary/Keyword: Process Performance Graph

Search Result 117, Processing Time 0.029 seconds

Efficient Sampling of Graph Signals with Reduced Complexity (저 복잡도를 갖는 효율적인 그래프 신호의 샘플링 알고리즘)

  • Kim, Yoon Hak
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.2
    • /
    • pp.367-374
    • /
    • 2022
  • A sampling set selection algorithm is proposed to reconstruct original graph signals from the sampled signals generated on the nodes in the sampling set. Instead of directly minimizing the reconstruction error, we focus on minimizing the upper bound on the reconstruction error to reduce the algorithm complexity. The metric is manipulated by using QR factorization to produce the upper triangular matrix and the analytic result is presented to enable a greedy selection of the next nodes at iterations by using the diagonal entries of the upper triangular matrix, leading to an efficient sampling process with reduced complexity. We run experiments for various graphs to demonstrate a competitive reconstruction performance of the proposed algorithm while offering the execution time about 3.5 times faster than one of the previous selection methods.

A Study on Feature Points matching for Object Recognition Using Genetic Algorithm (유전자 알고리즘을 이용한 물체인식을 위한 특징점 일치에 관한 연구)

  • Lee, Jin-Ho;Park, Sang-Ho
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.4
    • /
    • pp.1120-1128
    • /
    • 1999
  • The model-based object recognition is defined as a graph matching process between model images and an input image. In this paper, a graph matching problem is modeled as a n optimization problems and a genetic algorithm is proposed to solve the problems. For this work, fitness function, data structured and genetic operators are developed The simulation results are shown that the proposed genetic algorithm can match feature points between model image and input image for recognition of partially occluded two-dimensional objects. The performance fo the proposed technique is compare with that of a neural network technique.

  • PDF

The Automated Scoring of Kinematics Graph Answers through the Design and Application of a Convolutional Neural Network-Based Scoring Model (합성곱 신경망 기반 채점 모델 설계 및 적용을 통한 운동학 그래프 답안 자동 채점)

  • Jae-Sang Han;Hyun-Joo Kim
    • Journal of The Korean Association For Science Education
    • /
    • v.43 no.3
    • /
    • pp.237-251
    • /
    • 2023
  • This study explores the possibility of automated scoring for scientific graph answers by designing an automated scoring model using convolutional neural networks and applying it to students' kinematics graph answers. The researchers prepared 2,200 answers, which were divided into 2,000 training data and 200 validation data. Additionally, 202 student answers were divided into 100 training data and 102 test data. First, in the process of designing an automated scoring model and validating its performance, the automated scoring model was optimized for graph image classification using the answer dataset prepared by the researchers. Next, the automated scoring model was trained using various types of training datasets, and it was used to score the student test dataset. The performance of the automated scoring model has been improved as the amount of training data increased in amount and diversity. Finally, compared to human scoring, the accuracy was 97.06%, the kappa coefficient was 0.957, and the weighted kappa coefficient was 0.968. On the other hand, in the case of answer types that were not included in the training data, the s coring was almos t identical among human s corers however, the automated scoring model performed inaccurately.

Improving Performance and Routability Estimation in Deep-submicron Placement

  • Cho, June-Dong;Cho, Jin-Youn
    • Journal of Electrical Engineering and information Science
    • /
    • v.3 no.3
    • /
    • pp.292-299
    • /
    • 1998
  • Placement of multiple dies on an MCM or high-performance VLSI substrate is a non-trivial task in which multiple criteria need to be considered simultaneously to obtain a true multi-objective optimization. Unfortunately, the exact physical attributes of a design are not known in the placement step until entire design process is carried out. When the performance issues are considered, crosstalk noise constraints in the form of net separation and via constraint become important. In this paper, for better performance and wirability estimation during placement for MCMs, several performance constraints are taken into account simultaneously. A graph-based wirability estimation along with the Genetic placement optimization technique is proposed to minimize crosstalk, crossing, wirelength and the number of layers. Our work is significant since it is the first attempt at bringing the crosstalk and other performance issues into the placement domain.

  • PDF

A Study on Improvement of Low-power Memory Architecture in IoT/edge Computing (IoT/에지 컴퓨팅에서 저전력 메모리 아키텍처의 개선 연구)

  • Cho, Doosan
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.1
    • /
    • pp.69-77
    • /
    • 2021
  • The widely used low-cost design methodology for IoT devices is very popular. In such a networked device, memory is composed of flash memory, SRAM, DRAM, etc., and because it processes a large amount of data, memory design is an important factor for system performance. Therefore, each device selects optimized design factors such as function, performance and cost according to market demand. The design of a memory architecture available for low-cost IoT devices is very limited with the configuration of SRAM, flash memory, and DRAM. In order to process as much data as possible in the same space, an architecture that supports parallel processing units is usually provided. Such parallel architecture is a design method that provides high performance at low cost. However, it needs precise software techniques for instruction and data mapping on the parallel architecture. This paper proposes an instruction/data mapping method to support optimized parallel processing performance. The proposed method optimizes system performance by actively using hardware and software parallelism.

Conditional Signal-Acquisition Parameter Selection for Automated Satellite Laser Ranging System

  • Kim, Simon;Lim, Hyung-Chul;Kim, Byoungsoo
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.2
    • /
    • pp.97-103
    • /
    • 2019
  • An automated signal-acquisition method for the NASA's space geodesy satellite laser ranging (SGSLR) system is described as a selection of two system parameters with specified probabilities. These parameters are the correlation parameter: the minimum received pulse number for a signal-acquisition and the frame time: the minimum time for the correlation parameter. The probabilities specified are the signal-detection and false-acquisition probabilities to distinguish signals from background noise. The steps of parameter selection are finding the minimum set of values by fitting a curve and performing a graph-domain approximation. However, this selection method is inefficient, not only because of repetition of the entire process if any performance values change, such as the signal and noise count rate, but also because this method is dependent upon system specifications and environmental conditions. Moreover, computation is complicated and graph-domain approximation can introduce inaccuracy. In this study, a new method is proposed to select the parameters via a conditional equation derived from characteristics of the signal-detection and false-acquisition probabilities. The results show that this method yields better efficiency and robustness against changing performance values with simplicity and accuracy and can be easily applied to other satellite laser ranging (SLR) systems.

The Influence of Weight Adjusting Method and the Number of Hidden Layer있s Node on Neural Network있s Performance (인공 신경망의 학습에 있어 가중치 변화방법과 은닉층의 노드수가 예측정확성에 미치는 영향)

  • 김진백;김유일
    • The Journal of Information Systems
    • /
    • v.9 no.1
    • /
    • pp.27-44
    • /
    • 2000
  • The structure of neural networks is represented by a weighted directed graph with nodes representing units and links representing connections. Each link is assigned a numerical value representing the weight of the connection. In learning process, the values of weights are adjusted by errors. Following experiment results, the interval of adjusting weights, that is, epoch size influenced neural networks' performance. As epoch size is larger than a certain size, neural networks'performance decreased drastically. And the number of hidden layer's node also influenced neural networks'performance. The networks'performance decreased as hidden layers have more nodes and then increased at some number of hidden layer's node. So, in implementing of neural networks the epoch size and the number of hidden layer's node should be decided by systematic methods, not empirical or heuristic methods.

  • PDF

Multi-layer Caching Scheme Considering Sub-graph Usage Patterns (서브 그래프의 사용 패턴을 고려한 다중 계층 캐싱 기법)

  • Yoo, Seunghun;Jeong, Jaeyun;Choi, Dojin;Park, Jaeyeol;Lim, Jongtae;Bok, Kyoungsoo;Yoo, Jaesoo
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.3
    • /
    • pp.70-80
    • /
    • 2018
  • Due to the recent development of social media and mobile devices, graph data have been using in various fields. In addition, caching techniques for reducing I/O costs in the process of large capacity graph data have been studied. In this paper, we propose a multi-layer caching scheme considering the connectivity of the graph, which is the characteristics of the graph topology, and the history of the past subgraph usage. The proposed scheme divides a cache into Used Data Cache and Prefetched Cache. The Used Data Cache maintains data by weights according to the frequently used sub-graph patterns. The Prefetched Cache maintains the neighbor data of the recently used data that are not used. In order to extract the graph patterns, their past history information is used. Since the frequently used sub-graphs have high probabilities to be reused, they are cached. It uses a strategy to replace new data with less likely data to be used if the memory is full. Through the performance evaluation, we prove that the proposed caching scheme is superior to the existing cache management scheme.

Investigation of Geoboards in Elementary Mathematics Education (초등수학에서 기하판 활용방안 탐색)

  • 김민경
    • Education of Primary School Mathematics
    • /
    • v.5 no.2
    • /
    • pp.111-119
    • /
    • 2001
  • Over the years, the benefits of instructional manipulatives in mathematics education have been verified by classroom practice and educational research. The purpose of this paper is to introduce how the instructional material, specifically, geoboard could be used and integrated in elementary mathematics classroom in order to develop student's mathematical concepts and process in terms of the following areas: (1) Number '||'&'||' Operation : counting, fraction '||'&'||' additio $n_traction/multiplication (2) Geometry : geometric concepts (3) Geometry : symmetry '||'&'||' motion (4) Measurement : area '||'&'||' perimeter (5) Probability '||'&'||' Statistics : table '||'&'||' graph (6) Pattern : finding patterns Further, future study will continue to foster how manipulatives will enhance children's mathematics knowledge and influence on their mathematics performance.

  • PDF

A Distributed Vertex Rearrangement Algorithm for Compressing and Mining Big Graphs (대용량 그래프 압축과 마이닝을 위한 그래프 정점 재배치 분산 알고리즘)

  • Park, Namyong;Park, Chiwan;Kang, U
    • Journal of KIISE
    • /
    • v.43 no.10
    • /
    • pp.1131-1143
    • /
    • 2016
  • How can we effectively compress big graphs composed of billions of edges? By concentrating non-zeros in the adjacency matrix through vertex rearrangement, we can compress big graphs more efficiently. Also, we can boost the performance of several graph mining algorithms such as PageRank. SlashBurn is a state-of-the-art vertex rearrangement method. It processes real-world graphs effectively by utilizing the power-law characteristic of the real-world networks. However, the original SlashBurn algorithm displays a noticeable slowdown for large-scale graphs, and cannot be used at all when graphs are too large to fit in a single machine since it is designed to run on a single machine. In this paper, we propose a distributed SlashBurn algorithm to overcome these limitations. Distributed SlashBurn processes big graphs much faster than the original SlashBurn algorithm does. In addition, it scales up well by performing the large-scale vertex rearrangement process in a distributed fashion. In our experiments using real-world big graphs, the proposed distributed SlashBurn algorithm was found to run more than 45 times faster than the single machine counterpart, and process graphs that are 16 times bigger compared to the original method.