• Title/Summary/Keyword: Process Length

Search Result 3,164, Processing Time 0.132 seconds

A study on the styloid process in panoramic radiographs (파노라마방사선사진을 이용한 경상돌기에 관한 연구)

  • Hwang Ji-Young;Hwang Eui-Hwan;Lee Sang-Rae
    • Imaging Science in Dentistry
    • /
    • v.35 no.2
    • /
    • pp.105-110
    • /
    • 2005
  • Purpose : To find statistically based information about the natural variation in the length of the styloid process and to show the influence of the gender and age on the length of the styloid process. Materials and Methods : 1,300 panoramic radiographs were retrieved from inactive files at the Dental Hospital of Kyung Hee University. Measurements of the length of the styloid process were made directly on the radiographs from the inferior margin of the tympanic plate to the tip of the styloid process. Results The mean length of 948 styloid processes was $25.2mm{\pm}6.6$. The median was 24.5 mm, and the interquartile range was 7 mm. The mean length was 25.7 mm for male and 24.6 mm for female. All percentile was greater for male than for female. The median is 25 mm for male and 24 mm for female. Conclusion : This study suggests that the difference of the styloid process length between genders was statistically significant and the length of styloid process was significant increased with age until 30 years.

  • PDF

A Study on the Development of Arc Length Estimation Method in FCAW (FCAW에서의 아크 길이 추정 방법 개발에 관한 연구)

  • Bae, Kwang-Moo;Cho, Sang-Myung
    • Journal of Welding and Joining
    • /
    • v.27 no.3
    • /
    • pp.67-72
    • /
    • 2009
  • The flux cored arc welding (FCAW) process is one of the most frequently employed and important welding process due to high productivity and excellent workability. The process is performed either as an automated process or as a semi-automatic process. In FCAW process, welding voltage has been considered as a qualitative indication of arc length. But it is necessary to let welding operators know, maintain and manage the arc length directly by estimating and displaying it. In this study, to develop arc length estimation technique, we measured a welding circuit resistance($R_sc$) and then we calculated welding circuit voltage drop($V_sc$). Also, we measured arc peak voltage($V_ap$). By subtracting $V_sc$ from $V_arc$, we can easily calculate net arc voltage drop($V_arc$). Consequently, we suggested arc length estimating equation and basic algorithm by regressive analyzing the relationship between net arc voltage drop($V_arc$) and real arc length(Larc) measured by high speed camera. Therefore, arc length can be predicted by just monitoring welding current and voltage.

A Study on the Decision Process of the Length Dimension of a Mechanical System (기계 시스템의 길이제원 결정과정에 관한 연구)

  • Cheon, G.J;Lee, J.H;Han, D.C
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.5
    • /
    • pp.800-808
    • /
    • 1997
  • Decision process for length dimension in the mechanical system design process has been studied with a washing machine transmission as a model. The results are, (i) the length dimensions of the non-shaft elements are independent of other elements, (ii) the length dimensions of the shaft elements are dependent on the dimensions of the non-shaft elements located inside and outside of that elements, (iii) the length dimensions of the inner shaft elements are dependent on those of the outer shaft elements located parallel, (iv) the length dimensions of the shaft elements located serial are independent of each other.

A Study on the Estimation of the Flat Zone Length by using Image Processing (화상처리를 이용한 유연성디스크 가공 평면구간 측정에 관한 연구)

  • Roh, Dae-Ho;Park, Hwan-Seo;Lee, Hong-Guk;Shin, Kwan-Soo;Yoo, Song-Min
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.5
    • /
    • pp.672-677
    • /
    • 2010
  • The goal of this study is to simplify the measurement process of the flat zone length produced by a flexible disk grinding system for the process automation. The image of workpiece in the grinding process is obtained, and the cutting speed and the feeding speed are controlled carefully to maximize the flat zone length. The gradient, the inflection point and the length of the line in the image are calculated, and the length is also measured by using a projector. Processing conditions and inversely proportional to flat zone length was changing. The flat zone length is estimated by Neural network algorithm considering the process conditions with the estimated error range as 0.06~3.61%, the Neural network algorithm for the grinding process estimation is found to be useful for building the process automation database.

The effect of parameter estimation on $\bar{X}$ charts based on the median run length ($\bar{X}$ 관리도에서 런길이의 중위수에 기초한 모수 추정의 영향)

  • Lee, Yoojin;Lee, Jaeheon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.6
    • /
    • pp.1487-1498
    • /
    • 2016
  • In monitoring a process, in-control process parameters must be estimated from the Phase I data. When we design the control chart based on the estimated process parameters, the control limits are usually chosen to satisfy a specific in-control average run length (ARL). However, as the run length distribution is skewed when the process is either in-control or out-of-control, the median run length (MRL) can be used as alternative measure instead of the ARL. In this paper, we evaluate the performance of Shewhart $\bar{X}$ chart with estimated parameters in terms of the average of median run length (AMRL) and the standard deviation of MRL (SDMRL) metrics. In simualtion study, the grand sample mean is used as a process mean estimator, and several competing process standard deviation estimators are used to evaluate the in-control performance for various amounts of Phase I data.

Studies on Composites Using Wood and Nonwood Fibers - Effects of Polypropylene Fiber Length and Process Variables - (목질(木質)과 비목질계(非木質系) 섬유(纖維)를 활용한 복합재(複合材) 연구(硏究) - 폴리프로필렌의 섬유장(纖維長)과 공정변수(工程變數)의 영향(影響)을 중심(中心)으로 -)

  • Lee, Phil-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.33-44
    • /
    • 1997
  • This study was executed to examine the effects of polypropylene fiber length and process variables of the composites made from wood fiber and nonwood fiber mixed formulations. As a nonwood fiber the polypropylene with 3 denier thickness of tow condition was selected and cut into each length of 0.5, 1.0, 1.5, 2.0 and 2.5cm to mix with wood fiber. And also western hemlock wood fiber for medium density fiberboard was prepared. First, to decide an adequate polypropylene mixing fiber length, the composites of 1.0g/$cm^3$ density were made from 10% polypropylene fiber by each of five lengths and 90% western hemlock fiber mixed formulations. Thereafter as the experiments of process variable, the composites applied with adequate polypropylene fiber length(1.5cm) were made from 4 density levels (0.6, 0.8, 1.0, 1.2g/$cm^3$). 3 mixed formulations of wood fiber to polypropylene fiber(95 : 5, 90 : 10, 85 : 15), and 3 mat moisture contents(5, 10, 20%). According to the results and discussions it was concluded as follows ; The physical and mechanical properties were shown improved tendency. as polypropylene fiber length was increased in the range from 0.5 to 1.5cm, but shown decreasing tendency from 2.0 to 2.5 cm. Accordingly, it was shown that polypropylene fiber length is limited to 1.5cm or less length in mixing wood fiber and polypropylene fiber by turbulent air mixing process. As the densities of wood fiber-polypropylene fiber composites were increased, the physical and mechanical properties were clearly improved. Also they were shown significantly increasement statistically between densities respectively. In the mixed formulations, physical and mechanical properties were shown only slightly improvement, as they changed from 95 : 5 to 85 : 15 in wood fiber to polypropylene fiber. Despite of increasement of mat moisture content, mechanical properties were not improved significantly but physical properties were improved somewhat in wood fiber-polypropylene fiber composites.

  • PDF

Establishment of Design Criteria for Slot Shape Considering Castability of Aluminum Diecasting Process for Large Industrial Motor Rotor (대형 산업용 전동기 회전자용 알루미늄 다이캐스팅의 주조성을 고려한 슬롯 형상 설계 기준 정립)

  • Lee, Sung-Mo;Kim, Deok-Su;Park, Tae-Dong;Yoon, Young-Cheol
    • Journal of Korea Foundry Society
    • /
    • v.36 no.1
    • /
    • pp.10-17
    • /
    • 2016
  • Numerical analysis has been performed to evaluate effect of the shape variables such as core length, slot width and slot length on misrun in aluminum die casting process for motor rotor. The predictive method for misrun in diecasting process was established by comparing the result of numerical analysis and an actual motor rotor. Solidification modulus was introduced to predict quantitatively the castability of aluminum diecasting process for motor rotor. It was found that there are minimum critical solidification modulus and slot width to prevent misrun according to core length through diecasting limit diagram proposed using the predictive method. The critical solidification modulus and slot width increase as core length increases to prevent misrun of aluminum motor rotor in diecasting process. Based on the results, the design criteria of slot shape to prevent misrun of aluminum motor rotor with various core length were established.

Cumulative Weighted Score Control Schemes for Controlling the Mean of a Continuous Production Process

  • Park, Byoung-Chul;Park, Sung H.
    • Journal of the Korean Statistical Society
    • /
    • v.18 no.2
    • /
    • pp.135-148
    • /
    • 1989
  • Cumulative sum schemes based on a weighted score are considered for controlling the mean of a continuous production process; in which both the one-sided and two-sided schemes are proposed. The average run lengths and the run length distributions for the proposed schemes are obtained by the Markov chain approach. Comparisons by the average run length show that the proposed schemes perform nearly as well as the standard cumulative sum schemes in detecting changes in the process mean. Comparisons of the one-sided schemes by the run length distribution are also presented.

  • PDF

A Study on the Control of the Length of Carbon-Nano-Tube Probe (탄소나노튜브 프로브의 길이 제어에 관한 연구)

  • Lee, Jun-Sok;Kwak, Yoon-Keun;Kim, Soo-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1888-1891
    • /
    • 2003
  • In this paper, we proposed a new method to control the length of carbon nano tube in the single CNT probe. A single CNT probe was composed of a tungsten tip made by the electrochemical etching and carbon nano tube which was grown by CVD and prepared through the sonication. The two components were attached with the carbon tape. Since the length of CNT can not be controlled during the manufacturing, the post process is needed to shorten the CNT. In this paper, we proposed the method of electrochemical process. The process was done under the optical microscope and the results were checked by SEM. The diameter of the carbon nano tube used in this paper was about 130nm because the above process had to be done with the optical microscope. Using the method proposed in this paper, we can control the length of the nano tube tip.

  • PDF

A study on the Flat Zone Length of Workpiece at Flexible Disk Grinder Cutting Process Measurement and Prediction using Image Processing (화상처리시스템을 이용한 유연성디스크 절삭가공에서 평면구간 측정 및 예측에 관한 연구)

  • Shin, Kwan Soo;Roh, Dae Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.3
    • /
    • pp.402-407
    • /
    • 2013
  • In this paper, the image processing for flexible disk grinding and the effect of the grinding conditions on the flat zone length of a workpiece are investigated, with the purpose of automating the grinding process. To accomplish this, three issues should be carefully studied. The first is finding the relationship between the flat zone length and the grinding conditions such as the cutting speed and feeding speed. The second is developing a neural network algorithm to predict the flat zone. The third is developing an image processing algorithm to measure the flat zone length of a workpiece. Slope analysis is used to determine straight and curved sections during the image processing. For verification, the estimated length and the length from the image processing are compared with the length measured by a projector. There is a minimum difference of 1.7% between the predicted and measured values. The results of this paper will be useful in compiling a database for process automation.