Kim, Hong-Reol;Son, Seok-Jun;Kim, Tae-Gon;Kim, Jeong-Heui;Lim, Young-Cheol;Kim, Eui-Sun;Chang, Young-Hak
Journal of Sensor Science and Technology
/
v.10
no.5
/
pp.329-336
/
2001
This paper describes the steering control and geomagnetism cancellation for an autonomous vehicle using an MR sensor. The magneto-resistive (MR) sensor obtains the vector summation of the magnetic fields from embedded magnets and the Earth. The vehicle is controlled by the magnetic fields from embedded magnets. So, geomagnetism is the disturbance in the steering control system. In this paper, we propose a new method of the sensor arrangement in order to remove the geomagnetism and vehicle body interference. The proposed method uses two MR sensors located in a level plane and the steering controller has been developed. The controller has three input variables ($dB_x$, $dB_y$, $dB_z$) using the measured magnetic field difference, and an output variable (the steering angle). A simulation program was developed to acquire the data to teach the neural network, in order to test the ability of a neural network to learn the steering control process. Also, the computer simulation of the vehicle (including vehicle dynamics and steering) was used to verify the steering performance of the vehicle controller using the neural network. From the simulation and field test, good result was obtained and we confirmed the robustness of the neural network controller in a real autonomous vehicle.
Korean Journal of Construction Engineering and Management
/
v.14
no.3
/
pp.78-87
/
2013
The modern society has been drastically changed from the industrial economic society to the knowledge based society, to catch up with the knowledge and the change of technology required for the modern people, the people can not live in the modern society without the continued study or education. In case of architectural design firm, it is concentrating on the productivity of enterprise by cultivating the working level through the self education focused on the improvement of inner capacity. In connection with this, the efficiency of enterprises are analyzed by carrying out the Data Envelopment Analysis(DEA) utilizing the financial ratio index in the various field of industries recently, the analysis study for the efficiency utilizing DEA is increased in the construction industries as well. However, in case of construction industries, the study focused on the efficiency of administration only has been progressed, it is the real situation that the approach for the analysis of education efficiency of each enterprise is very insufficient. Therefore, this study analyzed the education efficiency of architectural design firm after the selection of input and output variables by utilizing the DEA model and utilizing the AHP analysis technique by deducting the variables through the preceding study in relation to the education efficiency and the interview with the specialists.
This study aims to investigate the technical efficiency of major container ports in the Bay of Bengal area and to study how certain factors influence the efficiency of container ports and terminals. The research is conducted on the four main container ports in the Bay of Bengal area, namely, Colombo Port in Sri Lanka, Chennai Port in India, Chittagong Port in Bangladesh, and Yangon Port in Myanmar. There are three input variables (quay length, storage area, and the number of cranes) and two output variables (throughput twenty-foot equivalent units and vessel calls) chosen for the process in this study. This paper evaluates the efficiency score of the defined variables and suggests implications for further improvement of the core competitiveness of the four selected ports. The findings indicate that Colombo Port is the most efficient on a technical scale, followed by Chennai Port, Yangon Port, and Chittagong Port. However, the slack and radial movement calculation results show that the inputs and outputs of the four ports need to be adjusted to be efficient and to reduce the amount of resources that are wasted. The results validate the adaptability of the improved data envelopment analysis algorithm in port efficiency analysis. The research findings provide an overview of the efficiencies of the selected container ports and can potentially affect the port management decisions made by policymakers, terminal operators, and carriers.
Transactions of the Korean Society of Mechanical Engineers A
/
v.41
no.4
/
pp.321-327
/
2017
In this study, to investigate the shape of the back bead as a weld quality parameter and to select the optimal condition of the root-pass TIG welding of a horizontal butt-joint, an experimental design and the response surface method (RSM) have been employed. Three parameters are used as input variables, which include the base current, peak current, and welding speed. The back bead width is selected as an output variable representing the weld quality, the target value of the width is 5.4 mm. Conducting the experiments according to the Box-Behnken experimental design, a $2^{nd}$ regression model for the back bead width was made, and the validation of the model was confirmed by using the F-test. The desirability function was designed through the nominal-the-best formula for the appropriate back bead width. Finally, the following optimal condition for welding was selected using the RSM: base current of 0.9204, peak current of 0.8676, and welding speed of 0.3776 in coded values. For verification, a test welding process under the optimal condition was executed and the result showed the back bead width of 5.38 mm that matched the target value well.
Park, Inseok;Hong, Seungwoo;Shin, Jaewook;Sunwoo, Myoungho
Transactions of the Korean Society of Automotive Engineers
/
v.21
no.3
/
pp.88-97
/
2013
This paper presents a robust air-to-fuel ratio (AFR) control algorithm for managing exhaust gas recirculation (EGR) systems. In order to handle production tolerance, deterioration and parameter-varying characteristics of the EGR system, quantitative feedback theory (QFT) is applied for designing the robust AFR control algorithm. A plant model of EGR system is approximated by the first order transfer function plus time-delay (FOPTD) model. EGR valve position and AFR of exhaust gas are used as input/output variables of the plant model. Through engine experiments, parameter uncertainty of the plant model is identified in a fixed engine operating point. Requirement specifications of robust stability and reference tracking performance are defined and these are fulfilled by the following steps: during loop shaping process, a PID controller is designed by using a nominal loop transmission function represented on Nichols chart. Then, the frequency response of closed-loop transfer function is used for designing a prefilter. It is validated that the proposed QFT-based AFR control algorithm successfully satisfy the requirements through experiments of various engine operating points.
Using an aggregator model, we look into the possibilities for substitution between Korea's exports, imports, domestic sales and domestic inputs (particularly labor), and substitution between disaggregated export and import components. Our approach heavily draws on an economy-wide GNP function that is similar to Samuelson's, modeling trade functions as derived from an integrated production system. Under the condition of homotheticity and weak separability, the GNP function would facilitate consistent aggregation that retains certain properties of the production structure. It would also be useful for a two-stage optimization process that enables us to obtain not only the net output price elasticities of the first-level aggregator functions, but also those of the second-level individual components of exports and imports. For the implementation of the model, we apply the Symmetric Generalized McFadden (SGM) function developed by Diewert and Wales to both stages of estimation. The first stage of the estimation procedure is to estimate the unit quantity equations of the second-level exports and imports that comprise four components each. The parameter estimates obtained in the first stage are utilized in the derivation of instrumental variables for the aggregate export and import prices being employed in the upper model. In the second stage, the net output supply equations derived from the GNP function are used in the estimation of the price elasticities of the first-level variables: exports, imports, domestic sales and labor. With these estimates in hand, we can come up with various elasticities of both the net output supply functions and the individual components of exports and imports. At the aggregate level (first-level), exports appear to be substitutable with domestic sales, while labor is complementary with imports. An increase in the price of exports would reduce the amount of the domestic sales supply, and a decrease in the wage rate would boost the demand for imports. On the other hand, labor and imports are complementary with exports and domestic sales in the input-output structure. At the disaggregate level (second-level), the price elasticities of the export and import components obtained indicate that both substitution and complement possibilities exist between them. Although these elasticities are interesting in their own right, they would be more usefully applied as inputs to the computational general equilibrium model.
Currently, black-box-based machine learning algorithms are used to analyze big data in manufacturing. This algorithm has the advantage of having high analytical consistency, but has the disadvantage that it is difficult to interpret the analysis results. However, in the manufacturing industry, it is important to verify the basis of the results and the validity of deriving the analysis algorithms through analysis based on the manufacturing process principle. To overcome the limitation of explanatory power as a result of this machine learning algorithm, we propose a manufacturing big data analysis method using genetic programming. This algorithm is one of well-known evolutionary algorithms, which repeats evolutionary operators such as selection, crossover, mutation that mimic biological evolution to find the optimal solution. Then, the solution is expressed as a relationship between variables using mathematical symbols, and the solution with the highest explanatory power is finally selected. Through this, input and output variable relations are derived to formulate the results, so it is possible to interpret the intuitive manufacturing mechanism, and it is also possible to derive manufacturing principles that cannot be interpreted based on the relationship between variables represented by formulas. The proposed technique showed equal or superior performance as a result of comparing and analyzing performance with a typical machine learning algorithm. In the future, the possibility of using various manufacturing fields was verified through the technique.
The optimization of supercritical water oxidation (SCWO) process for decomposing nitromethane was studied by means of a design of experiments. The optimum operating region for the SCWO process to minimize COD and T-N of treated water was obtained in a lab scale unit. The authors had compared the results from a SCWO pilot plant with those from a lab scale system to explore the problems of scale-up of SCWO process. The COD and T-N in treated waters were selected as key process output variables (KPOV) for optimization, and the reaction temperature (Temp) and the mole ratio of nitromethane to ammonium hydroxide (NAR) were selected as key process input variables (KPIV) through the preliminary tests. The central composite design as a statistical design of experiments was applied to the optimization, and the experimental results were analyzed by means of the response surface method. From the main effects analysis, it was declared that COD of treated water steeply decreased with increasing Temp but slightly decreased with an increase in NAR, and T-N decreased with increasing both Temp and NAR. At lower Temp as $420{\sim}430^{\circ}C$, the T-N steeply decreased with an increase in NAR, however its variation was negligible at higher Temp above $450^{\circ}C$. The regression equations for COD and T-N were obtained as quadratic models with coded Temp and NAR, and they were confirmed with coefficient of determination ($r^2$) and normality of standardized residuals. The optimum operating region was defined as Temp $450-460^{\circ}C$ and NAR 1.03-1.08 by the intersection area of COD < 2 mg/L and T-N < 40 mg/L with regression equations and considering corrosion prevention. To confirm the optimization results and investigate the scale-up problems of SCWO process, the nitromethane was decomposed in a pilot plant. The experimental results from a SCWO pilot plant were compared with regression equations of COD and T-N, respectively. The results of COD and T-N from a pilot plant could be predicted well with regression equations which were derived in a lab scale SCWO system, although the errors of pilot plant data were larger than lab ones. The predictabilities were confirmed by the parity plots and the normality analyses of standardized residuals.
Journal of the Institute of Electronics Engineers of Korea CI
/
v.39
no.3
/
pp.18-31
/
2002
In this study, we introduce a concept of advanced neurofuzzy polynomial networks(ANFPN), a hybrid modeling architecture combining neurofuzzy networks(NFN) and polynomial neural networks(PNN). These networks are highly nonlinear rule-based models. The development of the ANFPN dwells on the technologies of Computational Intelligence(Cl), namely fuzzy sets, neural networks and genetic algorithms. NFN contributes to the formation of the premise part of the rule-based structure of the ANFPN. The consequence part of the ANFPN is designed using PNN. At the premise part of the ANFPN, NFN uses both the simplified fuzzy inference and error back-propagation learning rule. The parameters of the membership functions, learning rates and momentum coefficients are adjusted with the use of genetic optimization. As the consequence structure of ANFPN, PNN is a flexible network architecture whose structure(topology) is developed through learning. In particular, the number of layers and nodes of the PNN are not fixed in advance but is generated in a dynamic way. In this study, we introduce two kinds of ANFPN architectures, namely the basic and the modified one. Here the basic and the modified architecture depend on the number of input variables and the order of polynomial in each layer of PNN structure. Owing to the specific features of two combined architectures, it is possible to consider the nonlinear characteristics of process system and to obtain the better output performance with superb predictive ability. The availability and feasibility of the ANFPN are discussed and illustrated with the aid of two representative numerical examples. The results show that the proposed ANFPN can produce the model with higher accuracy and predictive ability than any other method presented previously.
Bitcoin is a blockchain technology-based digital currency that has been recognized as a representative cryptocurrency and a financial investment asset. Due to its highly volatile nature, Bitcoin has gained a lot of attention from investors and the public. Based on this popularity, numerous studies have been conducted on price and trend prediction using machine learning and deep learning. This study employed LSTM (Long Short Term Memory) and CNN (Convolutional Neural Networks), which have shown potential for predictive performance in the finance domain, to enhance the classification accuracy in Bitcoin price trend prediction. XAI(eXplainable Artificial Intelligence) techniques were applied to the predictive model to enhance its explainability and interpretability by providing a comprehensive explanation of the model. In the empirical experiment, CNN was applied to technical indicators and Google trend data to build a Bitcoin price trend prediction model, and the CNN model using both technical indicators and Google trend data clearly outperformed the other models using neural networks, SVM, and LSTM. Then SHAP(Shapley Additive exPlanations) was applied to the predictive model to obtain explanations about the output values. Important prediction drivers in input variables were extracted through global interpretation, and the interpretation of the predictive model's decision process for each instance was suggested through local interpretation. The results show that our proposed research framework demonstrates both improved classification accuracy and explainability by using CNN, Google trend data, and SHAP.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.