• Title/Summary/Keyword: Process Filtering

Search Result 831, Processing Time 0.032 seconds

Content Recommendation System Using User Context-aware based Knowledge Filtering in Smart Environments (스마트 환경에서의 사용자 상황인지 기반 지식 필터링을 이용한 콘텐츠 추천 시스템)

  • Lee, Dongwoo;Kim, Ungsoo;Yeom, Keunhyuk
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.13 no.2
    • /
    • pp.35-48
    • /
    • 2017
  • There are many and various devices like sensors, displays, smart phone, etc. in smart environment. And contents can be provided by using these devices. Vast amounts of contents are provided to users, but in most environments, there are no regard for user or some simple elements like location and time are regarded. So there's a limit to provide meaningful contents to users. In this paper, I suggest the contents recommendation system that can recommend contents to users by reasoning context of users, devices and contents. The contents recommendation system suggested in this paper recommend the contents by calculating the user preferences using the situation reasoned with the contextual data acquired from various devices and the user profile received from the user directly. To organize this process, the method on how to model ontology with domain knowledge and how to design and develop the contents recommendation system are discussed in this paper. And an application of the contents recommendation system in Centum City, Busan is introduced. Then, the evaluation methods how the contents recommendation system is evaluated are explained. The evaluation result shows that the mean absolute error is 0.8730, which shows the excellent performance of the proposed contents recommendation system.

Image Restoration Filter using Combined Weight in Mixed Noise Environment (복합잡음 환경에서 결합가중치를 이용한 영상복원 필터)

  • Cheon, Bong-Won;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.210-212
    • /
    • 2021
  • In modern society, various digital equipment are being distributed due to the influence of the 4th industrial revolution, and they are used in a wide range of fields such as automated processes, intelligent CCTV, medical industry, robots, and drones. Accordingly, the importance of the preprocessing process in a system operating based on an image is increasing, and an algorithm for effectively reconstructing an image is drawing attention. In this paper, we propose a filter algorithm based on a combined weight value to reconstruct an image in a complex noise environment. The proposed algorithm calculates the weight according to the spatial distance and the weight according to the difference between the pixel values for the input image and the pixel values inside the filtering mask, respectively. The final output was filtered by applying the join weights calculated based on the two weights to the mask. In order to verify the performance of the proposed algorithm, we simulated it by comparing it with the existing filter algorithm.

  • PDF

Modified Average Filter for Salt and Pepper Noise Removal (Salt and Pepper 잡음제거를 위한 변형된 평균필터)

  • Lee, Hwa-Yeong;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.115-117
    • /
    • 2021
  • Currently, as IoT technology develops, monitoring systems are being used in various fields, and image processing is being used in various forms. Image data causes noise due to various causes during the transmission and reception process, and if it is not removed, loss of image information or error propagation occurs. Therefore, denoising images is essential. Typical methods of eliminating Salt and Pepper noise in images include AF, MF, and A-TMF. However, existing methods have the disadvantage of being somewhat inadequate in high-density noise. Therefore, in this paper, we propose an algorithm for determining noise for Salt and Pepper denoising and replacing the central pixel with an original pixel if it is non-noise, and processing the filtering mask by segmenting and averaging it in eight directions. We evaluate the performance by comparing and analyzing the proposed algorithms with existing methods.

  • PDF

Determination of High-pass Filter Frequency with Deep Learning for Ground Motion (딥러닝 기반 지반운동을 위한 하이패스 필터 주파수 결정 기법)

  • Lee, Jin Koo;Seo, JeongBeom;Jeon, SeungJin
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.4
    • /
    • pp.183-191
    • /
    • 2024
  • Accurate seismic vulnerability assessment requires high quality and large amounts of ground motion data. Ground motion data generated from time series contains not only the seismic waves but also the background noise. Therefore, it is crucial to determine the high-pass cut-off frequency to reduce the background noise. Traditional methods for determining the high-pass filter frequency are based on human inspection, such as comparing the noise and the signal Fourier Amplitude Spectrum (FAS), f2 trend line fitting, and inspection of the displacement curve after filtering. However, these methods are subject to human error and unsuitable for automating the process. This study used a deep learning approach to determine the high-pass filter frequency. We used the Mel-spectrogram for feature extraction and mixup technique to overcome the lack of data. We selected convolutional neural network (CNN) models such as ResNet, DenseNet, and EfficientNet for transfer learning. Additionally, we chose ViT and DeiT for transformer-based models. The results showed that ResNet had the highest performance with R2 (the coefficient of determination) at 0.977 and the lowest mean absolute error (MAE) and RMSE (root mean square error) at 0.006 and 0.074, respectively. When applied to a seismic event and compared to the traditional methods, the determination of the high-pass filter frequency through the deep learning method showed a difference of 0.1 Hz, which demonstrates that it can be used as a replacement for traditional methods. We anticipate that this study will pave the way for automating ground motion processing, which could be applied to the system to handle large amounts of data efficiently.

Quantitative Conductivity Estimation Error due to Statistical Noise in Complex $B_1{^+}$ Map (정량적 도전율측정의 오차와 $B_1{^+}$ map의 노이즈에 관한 분석)

  • Shin, Jaewook;Lee, Joonsung;Kim, Min-Oh;Choi, Narae;Seo, Jin Keun;Kim, Dong-Hyun
    • Investigative Magnetic Resonance Imaging
    • /
    • v.18 no.4
    • /
    • pp.303-313
    • /
    • 2014
  • Purpose : In-vivo conductivity reconstruction using transmit field ($B_1{^+}$) information of MRI was proposed. We assessed the accuracy of conductivity reconstruction in the presence of statistical noise in complex $B_1{^+}$ map and provided a parametric model of the conductivity-to-noise ratio value. Materials and Methods: The $B_1{^+}$ distribution was simulated for a cylindrical phantom model. By adding complex Gaussian noise to the simulated $B_1{^+}$ map, quantitative conductivity estimation error was evaluated. The quantitative evaluation process was repeated over several different parameters such as Larmor frequency, object radius and SNR of $B_1{^+}$ map. A parametric model for the conductivity-to-noise ratio was developed according to these various parameters. Results: According to the simulation results, conductivity estimation is more sensitive to statistical noise in $B_1{^+}$ phase than to noise in $B_1{^+}$ magnitude. The conductivity estimate of the object of interest does not depend on the external object surrounding it. The conductivity-to-noise ratio is proportional to the signal-to-noise ratio of the $B_1{^+}$ map, Larmor frequency, the conductivity value itself and the number of averaged pixels. To estimate accurate conductivity value of the targeted tissue, SNR of $B_1{^+}$ map and adequate filtering size have to be taken into account for conductivity reconstruction process. In addition, the simulation result was verified at 3T conventional MRI scanner. Conclusion: Through all these relationships, quantitative conductivity estimation error due to statistical noise in $B_1{^+}$ map is modeled. By using this model, further issues regarding filtering and reconstruction algorithms can be investigated for MREPT.

Object Tracking Based on Exactly Reweighted Online Total-Error-Rate Minimization (정확히 재가중되는 온라인 전체 에러율 최소화 기반의 객체 추적)

  • JANG, Se-In;PARK, Choong-Shik
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.4
    • /
    • pp.53-65
    • /
    • 2019
  • Object tracking is one of important steps to achieve video-based surveillance systems. Object tracking is considered as an essential task similar to object detection and recognition. In order to perform object tracking, various machine learning methods (e.g., least-squares, perceptron and support vector machine) can be applied for different designs of tracking systems. In general, generative methods (e.g., principal component analysis) were utilized due to its simplicity and effectiveness. However, the generative methods were only focused on modeling the target object. Due to this limitation, discriminative methods (e.g., binary classification) were adopted to distinguish the target object and the background. Among the machine learning methods for binary classification, total error rate minimization can be used as one of successful machine learning methods for binary classification. The total error rate minimization can achieve a global minimum due to a quadratic approximation to a step function while other methods (e.g., support vector machine) seek local minima using nonlinear functions (e.g., hinge loss function). Due to this quadratic approximation, the total error rate minimization could obtain appropriate properties in solving optimization problems for binary classification. However, this total error rate minimization was based on a batch mode setting. The batch mode setting can be limited to several applications under offline learning. Due to limited computing resources, offline learning could not handle large scale data sets. Compared to offline learning, online learning can update its solution without storing all training samples in learning process. Due to increment of large scale data sets, online learning becomes one of essential properties for various applications. Since object tracking needs to handle data samples in real time, online learning based total error rate minimization methods are necessary to efficiently address object tracking problems. Due to the need of the online learning, an online learning based total error rate minimization method was developed. However, an approximately reweighted technique was developed. Although the approximation technique is utilized, this online version of the total error rate minimization could achieve good performances in biometric applications. However, this method is assumed that the total error rate minimization can be asymptotically achieved when only the number of training samples is infinite. Although there is the assumption to achieve the total error rate minimization, the approximation issue can continuously accumulate learning errors according to increment of training samples. Due to this reason, the approximated online learning solution can then lead a wrong solution. The wrong solution can make significant errors when it is applied to surveillance systems. In this paper, we propose an exactly reweighted technique to recursively update the solution of the total error rate minimization in online learning manner. Compared to the approximately reweighted online total error rate minimization, an exactly reweighted online total error rate minimization is achieved. The proposed exact online learning method based on the total error rate minimization is then applied to object tracking problems. In our object tracking system, particle filtering is adopted. In particle filtering, our observation model is consisted of both generative and discriminative methods to leverage the advantages between generative and discriminative properties. In our experiments, our proposed object tracking system achieves promising performances on 8 public video sequences over competing object tracking systems. The paired t-test is also reported to evaluate its quality of the results. Our proposed online learning method can be extended under the deep learning architecture which can cover the shallow and deep networks. Moreover, online learning methods, that need the exact reweighting process, can use our proposed reweighting technique. In addition to object tracking, the proposed online learning method can be easily applied to object detection and recognition. Therefore, our proposed methods can contribute to online learning community and object tracking, detection and recognition communities.

The Effect of Data Size on the k-NN Predictability: Application to Samsung Electronics Stock Market Prediction (데이터 크기에 따른 k-NN의 예측력 연구: 삼성전자주가를 사례로)

  • Chun, Se-Hak
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.3
    • /
    • pp.239-251
    • /
    • 2019
  • Statistical methods such as moving averages, Kalman filtering, exponential smoothing, regression analysis, and ARIMA (autoregressive integrated moving average) have been used for stock market predictions. However, these statistical methods have not produced superior performances. In recent years, machine learning techniques have been widely used in stock market predictions, including artificial neural network, SVM, and genetic algorithm. In particular, a case-based reasoning method, known as k-nearest neighbor is also widely used for stock price prediction. Case based reasoning retrieves several similar cases from previous cases when a new problem occurs, and combines the class labels of similar cases to create a classification for the new problem. However, case based reasoning has some problems. First, case based reasoning has a tendency to search for a fixed number of neighbors in the observation space and always selects the same number of neighbors rather than the best similar neighbors for the target case. So, case based reasoning may have to take into account more cases even when there are fewer cases applicable depending on the subject. Second, case based reasoning may select neighbors that are far away from the target case. Thus, case based reasoning does not guarantee an optimal pseudo-neighborhood for various target cases, and the predictability can be degraded due to a deviation from the desired similar neighbor. This paper examines how the size of learning data affects stock price predictability through k-nearest neighbor and compares the predictability of k-nearest neighbor with the random walk model according to the size of the learning data and the number of neighbors. In this study, Samsung electronics stock prices were predicted by dividing the learning dataset into two types. For the prediction of next day's closing price, we used four variables: opening value, daily high, daily low, and daily close. In the first experiment, data from January 1, 2000 to December 31, 2017 were used for the learning process. In the second experiment, data from January 1, 2015 to December 31, 2017 were used for the learning process. The test data is from January 1, 2018 to August 31, 2018 for both experiments. We compared the performance of k-NN with the random walk model using the two learning dataset. The mean absolute percentage error (MAPE) was 1.3497 for the random walk model and 1.3570 for the k-NN for the first experiment when the learning data was small. However, the mean absolute percentage error (MAPE) for the random walk model was 1.3497 and the k-NN was 1.2928 for the second experiment when the learning data was large. These results show that the prediction power when more learning data are used is higher than when less learning data are used. Also, this paper shows that k-NN generally produces a better predictive power than random walk model for larger learning datasets and does not when the learning dataset is relatively small. Future studies need to consider macroeconomic variables related to stock price forecasting including opening price, low price, high price, and closing price. Also, to produce better results, it is recommended that the k-nearest neighbor needs to find nearest neighbors using the second step filtering method considering fundamental economic variables as well as a sufficient amount of learning data.

Transcriptomic Analysis of Triticum aestivum under Salt Stress Reveals Change of Gene Expression (RNA sequencing을 이용한 염 스트레스 처리 밀(Triticum aestivum)의 유전자 발현 차이 확인 및 후보 유전자 선발)

  • Jeon, Donghyun;Lim, Yoonho;Kang, Yuna;Park, Chulsoo;Lee, Donghoon;Park, Junchan;Choi, Uchan;Kim, Kyeonghoon;Kim, Changsoo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.67 no.1
    • /
    • pp.41-52
    • /
    • 2022
  • As a cultivar of Korean wheat, 'Keumgang' wheat variety has a fast growth period and can be grown stably. Hexaploid wheat (Triticum aestivum) has moderately high salt tolerance compared to tetraploid wheat (Triticum turgidum L.). However, the molecular mechanisms related to salt tolerance of hexaploid wheat have not been elucidated yet. In this study, the candidate genes related to salt tolerance were identified by investigating the genes that are differently expressed in Keumgang variety and examining salt tolerant mutation '2020-s1340.'. A total of 85,771,537 reads were obtained after quality filtering using NextSeq 500 Illumina sequencing technology. A total of 23,634,438 reads were aligned with the NCBI Campala Lr22a pseudomolecule v5 reference genome (Triticum aestivum). A total of 282 differentially expressed genes (DEGs) were identified in the two Triticum aestivum materials. These DEGs have functions, including salt tolerance related traits such as 'wall-associated receptor kinase-like 8', 'cytochrome P450', '6-phosphofructokinase 2'. In addition, the identified DEGs were classified into three categories, including biological process, molecular function, cellular component using gene ontology analysis. These DEGs were enriched significantly for terms such as the 'copper ion transport', 'oxidation-reduction process', 'alternative oxidase activity'. These results, which were obtained using RNA-seq analysis, will improve our understanding of salt tolerance of wheat. Moreover, this study will be a useful resource for breeding wheat varieties with improved salt tolerance using molecular breeding technology.

A Study on Inflow Rate According to Shape of Dual Structure Perforated Pipe Applied to Seawater Intake System (해수취수시스템에 적용된 2중구조 유공관의 형태에 따른 취수효율에 대한 연구)

  • Kim, Sooyoung;Lee, Seung Oh
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.6
    • /
    • pp.721-728
    • /
    • 2016
  • 97% of water on earth exists in the form of seawater. Therefore, the use of marine resources is one of the most important research issues at present. The use of seawater is expanding in various fields (seawater desalination, cooling water for nuclear power plants, deep seawater utilization, etc.). Seawater intake systems utilizing sand filters in order to take in clean seawater are being actively employed. For the intake pipe used in this system, assuring equal intake flows through the respective holes is very important to improve the efficiency of the intake and filtering process. In this study, we analyzed the efficiency of the dual structure perforated pipe used in the seawater intake system using 3D numerical simulations and the inflow rate according to the gap of the up holes. In the case of decreasing gaps in the up holes toward the pipe end, the variation of the total inflow rate was small in comparison with the other cases. However, the standard deviation of the inflow rate through the up holes was the lowest in this case. Also, stable flow occurred, which can improve the efficiency of the intake process. In the future, a sensitivity analysis of the various conditions should be performed based on the results of this study, in order to determine the factors influencing the efficiency, which can then be utilized to derive optimal designs suitable for specific environments.

Estimation of Populations of Moth Using Object Segmentation and an SVM Classifier (객체 분할과 SVM 분류기를 이용한 해충 개체 수 추정)

  • Hong, Young-Ki;Kim, Tae-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.705-710
    • /
    • 2017
  • This paper proposes an estimation method of populations of Grapholita molestas using object segmentation and an SVM classifier in the moth images. Object segmentation and moth classification were performed on images of Grapholita molestas moth acquired on a pheromone trap equipped in an orchard. Object segmentation consisted of pre-processing, thresholding, morphological filtering, and object labeling process. The classification of Grapholita molestas in the moth images consisted of the training and classification of an SVM classifier and estimation of the moth populations. The object segmentation simplifies the moth classification process by segmenting the individual objects before passing an input image to the SVM classifier. The image blocks were extracted around the center point and principle axis of the segmented objects, and fed into the SVM classifier. In the experiments, the proposed method performed an estimation of the moth populations for 10 moth images and achieved an average estimation precision rate of 97%. Therefore, it showed an effective monitoring method of populations of Grapholita molestas in the orchard. In addition, the mean processing time of the proposed method and sliding window technique were 2.4 seconds and 5.7 seconds, respectively. Therefore, the proposed method has a 2.4 times faster processing time than the latter technique.