• Title/Summary/Keyword: Process Cycle Efficiency

Search Result 450, Processing Time 0.029 seconds

Thermodynamic Analysis of Thermochemical Process for Water Splitting (고온열 이용 공정의 열역학적 해석)

  • Kim, Jong-Won;Son, Hyun-Myung;Lee, Sana-Ho;Sim, Kyu-Sung;Jung, Kwang-Deog
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.13 no.3
    • /
    • pp.204-213
    • /
    • 2002
  • In this work, hydrogen production by a 2-step water-spritting thermochemical cycle based on metal oxides redox pairs was investigated on the bases of the thermodynamics and technical feasibility. Also, a 2nd-law analysis performed on the closed cyclic process indicates a maximum exergy conversion efficiency of 7.1% when using a solar cavity-receiver operated at 2300K and air/Fe3O4 molar ratio = 10.

A Study on Information Strategy Development Using Configuration Management in Large-scale Construction Project (형상관리기법을 활용한 대형 프로젝트 정보화 전략개발)

  • Won, Seo Kyung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.66-67
    • /
    • 2018
  • Large-scale construction projects require various license and technologies for the manufacturing and handling processes. Also, the whole life cycle business process management determines the success of the project. Then, the efficiency of the business conducted by stakeholders and their possessed technology should be enhanced in order to strengthen their competitive power. For this reason, many experts pointed out to focus on the improvement of the life cycle process and efficient management. Since it is very important to keep up-to-date data and utilize it for work during the long-term project to reflect changes in the large-scale project, the most important part of the project management in project is information change management. Therefore, the objective of this study is applying configuration management(CM) technique in order to managing change data generated for planning in early phase. The result of this research will certainly assist the large-scale project managers in the development of information change management system.

  • PDF

ICT-based Waste Plastic Management Life Cycle Technology (ICT기반 폐플라스틱 관리 전주기 기술 동향)

  • Moon, Y.B.;Jeong, H.;Heo, T.W.
    • Electronics and Telecommunications Trends
    • /
    • v.37 no.4
    • /
    • pp.28-35
    • /
    • 2022
  • To solve the challenge of waste plastics, this study investigated the related technologies and company trends along the plastic life cycle, and primarily describes ICT technologies to improve efficiency in the process of sorting and sorting waste plastics. Waste plastic discharge caused by the explosive increase in parcel traffic because of COVID-19 is also growing exponentially. Hence, waste treatment is emerging as a social challenge. Most of the domestic waste classification depends on the manual process according to the waste pollution level. The plastic material classification approach using the spectroscopy approach reveals a high error in the contaminated waste plastic classification, but if the Artificial Intelligence-based image classification technology is employed together, the classification precision can be enhanced because of the type of waste plastic product and the contaminated part can be differentiated.

Construction Cost Segregation Process using Building Information Modeling

  • Zhou, Rong;Li, Huimin;Zhang, Chengyi;Lv, Lelin;Tian, Junrui;Cakir, Sevilay Demirkesen
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.1106-1113
    • /
    • 2022
  • Cost segregation helps reduce tax liabilities by reclassifying real property to personal property and accelerates tax depreciation of a property. A typical cost segregation study requires much time and high costs. This study proposed a BIM integrated cost segregation process that can be applied to any commercial building project. The proposed BIM-based cost segregation process was verified in a new commercial construction project. It approved that this approach can: (1) increase the cash flow for the owner and provide assistance to tax-paying enterprises; (2) enable the contractor to use it as an added value in the bidding process; (3) realize data sharing in a common platform to improve the cost segregation study efficiency and reduce costs and errors; (4) contribute to the asset management in the life cycle of buildings while filling in the blank of cost segregation process. Future studies will focus on the automation of cost segregation and asset management in building construction's life cycle.

  • PDF

A Study on Optimal Dye-coating Conditions to Reduce Dye-adsorption Time with Improved DSSC Efficiency

  • Seo, Yeong-Ho;Choe, Eun-Chang;Hong, Byeong-Yu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.481.1-481.1
    • /
    • 2014
  • Dye-sensitized solar cell (DSSC) has been extensively investigated as the next generation energy source. Despite attractive features of simple fabrication process and its economical efficiency, there are some problems such as low efficiency and low long-term stability. Many groups have attempted the proposed way to improve the cell efficiency and long-term stability such as low recombination rate between $TiO_2$ surface and electrolyte, the development of new dye molecules capable of light adsorption as broadly as possible, the fabrication of a solid-state DSSC by replacing the liquid electrolyte, and protective coating on glass. In this work, we confirmed new dye-coating conditions to maximize the dye adsorption between the dye and $TiO_2$ nanoparticle surface. The experiment results coating conditions with the coating temperature of $70^{\circ}C$, the dye concentration of 10 mM and the coating time of 3 min. Conditions have two times, three times cycle the experiment in progress efficiency rises.

  • PDF

A study on the Cycle-Accurate Retargetable Micro-Architecture Simulation Framework (사이클 정확도의 재목적화 가능한 마이크로아키텍쳐 시뮬레이션 프레임워크에 관한 연구)

  • Yang, Hoon-Mo;Lee, Moon-Key
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.643-646
    • /
    • 2005
  • This paper presents CARMA (Cycle-Accurate Retargetable Micro-Architecture) as efficient framework for SoC-centric pipelined instruction-set architectures. It is based on ADL (Architecture Description Language) and provides more concise and manifest semantics to describe behavior of instruction set by mixing efficiency of instruction-set simulators and flexibility of RTL simulators. It exploits new timing model method based on process scheduling so it can support general timing model with cycle accuracy for large-scaled architectures usually used in SoC multimedia chip-set. According to experiments, the proposed framework was shown to be 5.5 times faster than HDL and 2.5 times faster than System-C in simulation speed so it is applicable for complex instruction-set pipelined architectures.

  • PDF

A Research the Optimal Plant Life Cycle using Case Study (사례를 통한 최적 라이프 사이클에 관한 연구)

  • 심종칠;김창은;고용해
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.18 no.34
    • /
    • pp.83-89
    • /
    • 1995
  • We call as plant life cycle the process starting from plant plan, design to disuse by way of construction, operation, but the plant facility inside it comes to changes of cope with various inner factor like blazing phenomenon and outer factor according to economic state. On the presumption of these factors, the problem is brought about how plant should be managed, this study attempt to suggest the conservation management through economic evaluation in investment design and alternative, that is, methodology connecting that of economical efficiency evaluation based on LCC(Life Cycle Costing) thinking method and facility management with that of life prediction.

  • PDF

Determination of the Optimal Operating Condition of Dual Mixed Refrigerant Cycle of LNG FPSO Topside Liquefaction Process (LNG FPSO Topside의 액화 공정에 대한 이중 혼합 냉매 사이클의 최적 운전 조건 결정)

  • Lee, Joon-Chae;Cha, Ju-Hwan;Roh, Myung-Il;Hwang, Ji-Hyun;Lee, Kyu-Yeul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.1
    • /
    • pp.33-44
    • /
    • 2012
  • In this study, the optimal operating conditions for the dual mixed refrigerant(DMR) cycle were determined by considering the power efficiency. The DMR cycle consists of compressors, heat exchangers, seawater coolers, valves, phase separators, tees, and common headers, and the operating conditions include the equipment's flow rate, pressure, temperature, and refrigerant composition per flow. First, a mathematical model of the DMR cycle was formulated in this study by referring to the results of a past study that formulated a mathematical model of the single mixed refrigerant(SMR) cycle, which consists of compressors, heat exchangers, seawater coolers, and valves, and by considering as well the tees, phase separators, and common headers. Finally, in this study, the optimal operating conditions from the formulated mathematical model was obtained using a hybrid optimization method that consists of the genetic algorithm(GA) and sequential quadratic programming(SQP). Moreover, the required power at the obtained conditions was decreased by 1.4% compared with the corresponding value from the past relevant study of Venkatarathnam.

Ratio Optimization Between Sizes of Components of Heat Recovery Steam Generator in Combined Cycle Gas Turbine Power Plants (복합사이클 발전플랜트 폐열회수 보일러의 구성요소 크기비의 최적화)

  • In, Jong-Soo;Lee, Sang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.6
    • /
    • pp.403-410
    • /
    • 2009
  • This paper proposes a new approach to find the optimum ratios between sizes of the heat exchangers of the heat recovery steam generator (HRSG) system with limited size to maximize the efficiency of the steam turbine (bottom) cycle of combined cycle power plants (CCPP), but without performing the bottom cycle analysis. This could be achieved by minimizing the unavailable exergy (the sum of the destroyed and the lost exergies) resulted from the heat transfer process of the HRSG system. The present approach is relatively simple and straightforward because the process of the trial-and-error method, typical in performing the bottom cycle analysis for the system optimization, could be avoided. To demonstrate the usefulness of the present method, a single-stage HRSG system was chosen and the optimum evaporation temperature was obtained corresponding to the condition of the maximum useful work. The results show that the optimum evaporation temperature based on the present exergy analysis appears similar to that based on the bottom cycle analysis. Also shown is the dependency of size (NTU) ratios between the heat exchangers on the inlet gas temperature, which is another important factor in determining the optimum condition once overall size of the heat recovery steam generator is given. The present approach turned out to be a useful tool for optimization of the singlestage HRSG systems and can easily be extended to multi-stage systems.

Effects of Sputter Deposition Sequence and Sulfurization Process of Cu, Zn, Sn on Properties of Cu2ZnSnS4 Solar Cell Material (Cu, Zn, Sn의 스퍼터링 적층방법과 황화 열처리공정이 Cu2ZnSnS4 태양전지재료 특성에 미치는 효과)

  • Park, Nam-Kyu;Arepalli, Vinaya Kumar;Kim, Eui-Tae
    • Korean Journal of Materials Research
    • /
    • v.23 no.6
    • /
    • pp.304-308
    • /
    • 2013
  • The effect of a sputter deposition sequence of Cu, Zn, and Sn metal layers on the properties of $Cu_2ZnSnS_4$ (CZTS) was systematically studied for solar cell applications. The set of Cu/Sn/Zn/Cu multi metal films was deposited on a Mo/$SiO_2$/Si wafer using dc sputtering. CZTS films were prepared through a sulfurization process of the Cu/Sn/Zn/Cu metal layers at $500^{\circ}C$ in a $H_2S$ gas environment. $H_2S$ (0.1%) gas of 200 standard cubic centimeters per minute was supplied in the cold-wall sulfurization reactor. The metal film prepared by one-cycle deposition of Cu(360 nm)/Sn(400 nm)/Zn(400 nm)/Cu(440 nm) had a relatively rough surface due to a well-developed columnar structure growth. A dense and smooth metal surface was achieved for two- or three-cycle deposition of Cu/Sn/Zn/Cu, in which each metal layer thickness was decreased to 200 nm. Moreover, the three-cycle deposition sample showed the best CZTS kesterite structures after 5 hr sulfurization treatment. The two- and three-cycle Cu/Sn/Zn/Cu samples showed high-efficient photoluminescence (PL) spectra after a 3 hr sulfurization treatment, wheres the one-cycle sample yielded poor PL efficiency. The PL spectra of the three-cycle sample showed a broad peak in the range of 700-1000 nm, peaked at 870 nm (1.425 eV). This result is in good agreement with the reported bandgap energy of CZTS.