• Title/Summary/Keyword: Procedure Task

Search Result 382, Processing Time 0.028 seconds

Water consumption prediction based on machine learning methods and public data

  • Kesornsit, Witwisit;Sirisathitkul, Yaowarat
    • Advances in Computational Design
    • /
    • v.7 no.2
    • /
    • pp.113-128
    • /
    • 2022
  • Water consumption is strongly affected by numerous factors, such as population, climatic, geographic, and socio-economic factors. Therefore, the implementation of a reliable predictive model of water consumption pattern is challenging task. This study investigates the performance of predictive models based on multi-layer perceptron (MLP), multiple linear regression (MLR), and support vector regression (SVR). To understand the significant factors affecting water consumption, the stepwise regression (SW) procedure is used in MLR to obtain suitable variables. Then, this study also implements three predictive models based on these significant variables (e.g., SWMLR, SWMLP, and SWSVR). Annual data of water consumption in Thailand during 2006 - 2015 were compiled and categorized by provinces and distributors. By comparing the predictive performance of models with all variables, the results demonstrate that the MLP models outperformed the MLR and SVR models. As compared to the models with selected variables, the predictive capability of SWMLP was superior to SWMLR and SWSVR. Therefore, the SWMLP still provided satisfactory results with the minimum number of explanatory variables which in turn reduced the computation time and other resources required while performing the predictive task. It can be concluded that the MLP exhibited the best result and can be utilized as a reliable water demand predictive model for both of all variables and selected variables cases. These findings support important implications and serve as a feasible water consumption predictive model and can be used for water resources management to produce sufficient tap water to meet the demand in each province of Thailand.

Improving Physical Therapy Services of Health Centers in Korea (전국 보건소 물리치료실 운영 실태와 활성화 방안)

  • Chang, Eun-Ju
    • Journal of Korean Physical Therapy Science
    • /
    • v.3 no.2
    • /
    • pp.1021-1036
    • /
    • 1996
  • The purpose of this study are ( i ) to examine operating situation of physical therapy department and job satisfaction of physical therapists in health centers, (ii) to analyze utilization patterns and patient satisfaction of physical therapy services among health center visitors, and finally, (iii) to suggest policy implications in facilitating improvement on physical therapy services of health centers. The materials are collected from 105 physical therapists among nationwide health centers and 203 patients of 5 health centers in Pusan, Korea. The survey is conducted from February 13 to March 30, 1996 with a structured self - administered questionnaire. Major results of the study are as follows. First, the result of regression analysis between job satisfaction and affecting factors identify following variables as the significant determinants; self-development(+), job itself(+), and co-worker support (+). Second, the current operating situation of physical therapy department shows such problem as; i )shortage and unstable job security of physical therapists, ii )absence of rehabilitation specialist, iii )lack of understanding on physical therapy of co-workers, iv)shortage of physical therapy equipment and facility, v)burdensome task of physical therapists, and vi) inappropriate purchase process of equipment. Third, patient satisfaction for physical therapy services are revealed relatively high. And the result of regression analysis between patient satisfaction and affecting factors identify following variables as the significant determinants; credibility of physical therapist(+), satisfaction for waiting time(+), cleanliness(+). Fourth, the patients appeal about physical therapy services such problem as; i) shortage of physical therapists, physical therapy equipment, and facility, ii) inconvenient administrative procedure for utilization physical therapy services. Fifth and last, recommendations for the improvement of physical therapy services of health centers are as follows; i )recruiting more physical therapists, ii )regular employment of physical therapists instead of daily use employment, iii )re-arrangement of facility for patient's convenience, iv )establishing reasonable purchasing system of equipment for physical therapy, v) reforming administrative procedure for patient focused care.

  • PDF

Practical seismic assessment of unreinforced masonry historical buildings

  • Pardalopoulos, Stylianos I.;Pantazopoulou, Stavroula J.;Ignatakis, Christos E.
    • Earthquakes and Structures
    • /
    • v.11 no.2
    • /
    • pp.195-215
    • /
    • 2016
  • Rehabilitation of historical unreinforced masonry (URM) buildings is a priority in many parts of the world, since those buildings are a living part of history and a testament of human achievement of the era of their construction. Many of these buildings are still operational; comprising brittle materials with no reinforcements, with spatially distributed mass and stiffness, they are not encompassed by current seismic assessment procedures that have been developed for other structural types. To facilitate the difficult task of selecting a proper rehabilitation strategy - often restricted by international treaties for non-invasiveness and reversibility of the intervention - and given the practical requirements for the buildings' intended reuse, this paper presents a practical procedure for assessment of seismic demands of URM buildings - mainly historical constructions that lack a well-defined diaphragm action. A key ingredient of the method is approximation of the spatial shape of lateral translation, ${\Phi}$, that the building assumes when subjected to a uniform field of lateral acceleration. Using ${\Phi}$ as a 3-D shape function, the dynamic response of the system is evaluated, using the concepts of SDOF approximation of continuous systems. This enables determination of the envelope of the developed deformations and the tendency for deformation and damage localization throughout the examined building for a given design earthquake scenario. Deformation demands are specified in terms of relative drift ratios referring to the in-plane and the out-of-plane seismic response of the building's structural elements. Drift ratio demands are compared with drift capacities associated with predefined performance limits. The accuracy of the introduced procedure is evaluated through (a) comparison of the response profiles with those obtained from detailed time-history dynamic analysis using a suite of ten strong ground motion records, five of which with near-field characteristics, and (b) evaluation of the performance assessment results with observations reported in reconnaissance reports of the field performance of two neoclassical torsionally-sensitive historical buildings, located in Thessaloniki, Greece, which survived a major earthquake in the past.

Decoding Brain Patterns for Colored and Grayscale Images using Multivariate Pattern Analysis

  • Zafar, Raheel;Malik, Muhammad Noman;Hayat, Huma;Malik, Aamir Saeed
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.4
    • /
    • pp.1543-1561
    • /
    • 2020
  • Taxonomy of human brain activity is a complicated rather challenging procedure. Due to its multifaceted aspects, including experiment design, stimuli selection and presentation of images other than feature extraction and selection techniques, foster its challenging nature. Although, researchers have focused various methods to create taxonomy of human brain activity, however use of multivariate pattern analysis (MVPA) for image recognition to catalog the human brain activities is scarce. Moreover, experiment design is a complex procedure and selection of image type, color and order is challenging too. Thus, this research bridge the gap by using MVPA to create taxonomy of human brain activity for different categories of images, both colored and gray scale. In this regard, experiment is conducted through EEG testing technique, with feature extraction, selection and classification approaches to collect data from prequalified criteria of 25 graduates of University Technology PETRONAS (UTP). These participants are shown both colored and gray scale images to record accuracy and reaction time. The results showed that colored images produces better end result in terms of accuracy and response time using wavelet transform, t-test and support vector machine. This research resulted that MVPA is a better approach for the analysis of EEG data as more useful information can be extracted from the brain using colored images. This research discusses a detail behavior of human brain based on the color and gray scale images for the specific and unique task. This research contributes to further improve the decoding of human brain with increased accuracy. Besides, such experiment settings can be implemented and contribute to other areas of medical, military, business, lie detection and many others.

Identification of Forming Limits of Sheet Metals for Automobile Parts by Asymmetric Deep-drawing Experiments (비대칭 시편의 딥드로잉 실험에 의한 박판금속의 성형한계도)

  • Heo, Hun;Lee, Chung-Ho;Jeong, Jae-Ung
    • Transactions of Materials Processing
    • /
    • v.7 no.1
    • /
    • pp.81-93
    • /
    • 1998
  • Identification of forming limits of sheet metals is an important task to be done before the sheet metal forming processes. The information of the forming limit is indispensable for design of deformed shapes and related forming processes. This procedure becomes more important than ever as the auto-body becomes complicated and the number of auto-body parts is reduced for lower production cost. To identify the forming limit of sheet metals stretching with a hemispherical punch has gained popularity because of the convenient experimental procedure. The stretching experiment however has localized deformation or the shear band is originated from the non-unifrom deformation in the critical circum-stance instead of the absolute criterion. More accurate information of the forming limit therefore could be obtained by a more appropriate experiment to the real process. In this papaer an experiment program is devised to practivally identify the forming limits of sheet metals for auto-body parts. The experiment program contains not only stretching but deep-drawing Both forming experiments use the same hemispherical punch while they use different specimens. Deep-drawing experiments use speci-mens cut out in circular arc on both sides of circular blank to make it torn during the deep-drawing They also use speciments cut out straight in one side of a circular blank to make it deformed unevenly which causes local deformation during the deep-drawing. The experimental result demonstrates that the forming limit diagrams in the two cases show difference in their effective magnitude. The forming limit curve from deep-drawing is located lower than that from stretching. It is noted from the result that the deep-drawing process causes acceleration of localized deformation in comparison with the stretching process. From the experimental result the maximum value of forming limit could be pre-dicted for safe design.

  • PDF

LCCA-embedded Monte Carlo Approach for Modeling Pay Adjustment at the State DOTs (도로공사에서 생애주기비용을 사용한 지급조정모델 개발에 관한 연구)

  • Choi Jae-ho
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.72-77
    • /
    • 2002
  • The development of a Pay Adjustment (PA) procedure for implementing Performance-related Specifications (PRS) is known to be a difficult task faced by most State Highway Agencies (SHAs) due to the difficulty in such areas as selecting pay factor items, modeling the relationship between stochastic variability of pay factor items and pavement performance, and determining an overall lot pay adjustment. This led to the need for an effective way of developing a scientific pay adjustment procedure by incorporating Life Cycle Cost Analysis (LCCA) embedded Monte Carlo approach. In this work, we propose a prototype system to determine a PA specifically using the data in the pavement management information systems at Wisconsin Department of Transportation (WisDOT) as an exemplary to other SHAs. It is believed that the PRS methodology demonstrated in this study can be used in real projects by incorporating the more accurate and reliable performance prediction models and LCC model.

  • PDF

A Study on a Trend of Human Error Types Observed in a Simulated Computerized Nuclear Power Plant Control Room

  • Lee, Dhong Ha
    • Journal of the Ergonomics Society of Korea
    • /
    • v.32 no.1
    • /
    • pp.9-16
    • /
    • 2013
  • Objective: The aim of this study is to investigate a trend of human error types observed in a series of verification and validation experiments for an Advanced Control Room(ACR) equipped with Lager Display Panel(LDP), Work Station Flat Panel Display(WS FPD), list type Alarm System(AS), Soft Control(SC) and Computerized Procedure System(CPS). Background: Operator behaviors in a fully computerized control room are quite different from those in a traditional hard-wired control room. Operators in an ACR all together monitor plant status and variables through their own interface system such as LDP and WS FPD, are notified of abnormal plant status through their own list type AS, control the plant through their own SC, and follow the structured procedure through their own CPS whereas operators in a traditional control room only separately do their duty directed by their supervisor. Especially the secondary task such as manipulating the user interface of ACR can be an extra burden to all the operators including the supervisor. Method: The Reason's human error classification method was applied to operators' behavioral data collected from a series of verification and validation experiments where operators showed their plant operational behaviors under a couple of harsh scenarios using the ACR simulator. Results: As operators accustomed to the new ACR system, knowledge or rule based mistakes appearing frequently in the early series of experiments decreased drastically in the latest stage of the series. Slip and lapse types of errors were observed throughout the series of experiments. Conclusion: Education and training can be one of the most important factors for the operators accustomed to the traditional control room to be adapted to the new system and to run the ACR successfully. Application: The results of this study implied that knowledge or rule based mistakes can be reduced by training and education but that lapse type errors might be reduced only through innovative improvement in human-system interface design or teamwork culture design including a new leadership style suitable for ACR.

A Study on Practice Test of The National Technical Qualification based on Rubric (루브릭 기반 국가기술자격 실기평가 연구)

  • Yoon, Gwan-Sik;Choi, Myung-Ran
    • The Journal of Korean Institute for Practical Engineering Education
    • /
    • v.4 no.2
    • /
    • pp.13-23
    • /
    • 2012
  • The purpose of this study is to identify and develop a rubric for assessing the practice test in national technical qualification with validity and objectivity. There are three specific purposes for this study. First. we suggest some issues to consider when we develop a rubric. Second, we suggest the general procedure and main factors in developing a rubric. Third, we identify some problems and suggest some improvement measures for the rubric in national technical qualification examination. The procedure for developing a rubric is as follows; decisions of task, the relation with goal, classify of performance level, and validity. Also, there are five main factors as follows; contents, criteria, practicality, credibility, and objectivity.

  • PDF

The Method of Hierarchical Emotion Evaluation using Intuitive Categorization (직감적 범주화를 이용한 계층적 감성평가방법)

  • Kim, Don-Han
    • Science of Emotion and Sensibility
    • /
    • v.12 no.1
    • /
    • pp.45-54
    • /
    • 2009
  • Categorization in a vital means for dealing with the multitudes of entities in the world surrounding people. Among others, the perceptual and the evaluative similarities factors strongly affect categorization. The conventional SD-type procedure are insufficient in this regard, since it requires an individual subject to make isolated judgments about each stimulus to identify categorization in terms of a group tendency. It disregards the individual categorization in which the similarities are of great importance. Thus in this study the phased emotional evaluation method is suggested based on the intuitive categorization of stimuli and on the similarity judgement of representative/ non-representative case in each category. To verify the effectiveness of the suggested evaluation method the scanned jewelry images are selected as test stimuli for emotional evaluation experiment. As a result of the evaluation experiment, the conventional SD-type procedure is complemented by the emotional evaluation method in phases of the task of intuitive categorization, the selection of the representative images and the setup of the evaluation score of the representative images to internally supplied anchors of evaluating non-representative images.

  • PDF

GPU Memory Management Technique to Improve the Performance of GPGPU Task of Virtual Machines in RPC-Based GPU Virtualization Environments (RPC 기반 GPU 가상화 환경에서 가상머신의 GPGPU 작업 성능 향상을 위한 GPU 메모리 관리 기법)

  • Kang, Jihun
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.5
    • /
    • pp.123-136
    • /
    • 2021
  • RPC (Remote Procedure Call)-based Graphics Processing Unit (GPU) virtualization technology is one of the technologies for sharing GPUs with multiple user virtual machines. However, in a cloud environment, unlike CPU or memory, general GPUs do not provide a resource isolation technology that can limit the resource usage of virtual machines. In particular, in an RPC-based virtualization environment, since GPU tasks executed in each virtual machine are performed in the form of multi-process, the lack of resource isolation technology causes performance degradation due to resource competition. In addition, the GPU memory competition accelerates the performance degradation as the resource demand of the virtual machines increases, and the fairness decreases because it cannot guarantee equal performance between virtual machines. This paper, in the RPC-based GPU virtualization environment, analyzes the performance degradation problem caused by resource contention when the GPU memory requirement of virtual machines exceeds the available GPU memory capacity and proposes a GPU memory management technique to solve this problem. Also, experiments show that the GPU memory management technique proposed in this paper can improve the performance of GPGPU tasks.