• Title/Summary/Keyword: Procedural modeling

Search Result 69, Processing Time 0.02 seconds

Exploring Ways to Connect Conceptual Knowledge and Procedural Knowledge in Mathematical Modeling (수학적 모델링 수업에서 개념적 지식과 절차적 지식의 연결 방안 탐색)

  • Lee, Ye-jin;Choi, Mira;Kim, Yoonjung;Lim, Miin
    • Education of Primary School Mathematics
    • /
    • v.26 no.4
    • /
    • pp.349-368
    • /
    • 2023
  • The purpose of this study is to explore ways for students to connect conceptual and procedural knowledge in mathematical modeling lessons. Accordingly, we selected the greatest common divisor among the learning contents in which elementary school students have difficulties connecting conceptual and procedural knowledge. A mathematical modeling lesson was designed and implemented to solve problems related to the greatest common divisor while connecting conceptual and procedural knowledge. As a result of the analysis, it was found that the mathematical modeling lesson had positive effects on students solving problems by connecting conceptual and procedural knowledge. In addition, through actual class application, a teaching and learning plan was derived to meaningfully connect conceptual and procedural knowledge in mathematical modeling lessons.

Efficient Procedural Modeling of Trees Based on Interactive Growth Volume Control

  • Kim, Jinmo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.9
    • /
    • pp.2232-2245
    • /
    • 2013
  • The present study proposes efficient procedural modeling methods for enabling the growth and creation of various trees with minimal user control. Growth volume algorithms are utilized in order to easily and effectively calculate many parameters that determine tree growth, including branch propagation. Procedural methods are designed so that users' interactive control structures can be applied to these algorithms to create unique tree models efficiently. First, through a two-line-based interactive growth volume control method, the growth information that determines the overall shape of the tree is intuitively adjusted. Thereafter, independent branch control methods designed to control individual branches are added to the growth deformation in order to enable the growth of unique trees. Whether the growth processes of desired trees can be easily and intuitively controlled by the proposed method is verified through experiments. Methods that can apply the proposed methods are also verified.

Standardization of an Integrated Application Resource of STEP for the Exchange of Procedurally Represented 2D CAD Models (절차적으로 표현된 2D CAD 모델 교환을 위한 STEP 통합 응용 자원의 표준화)

  • Kim, Byung-Chul;Mun, Du-Hwan;An, Kyung-Ik;Han, Soon-Hung
    • Korean Journal of Computational Design and Engineering
    • /
    • v.13 no.2
    • /
    • pp.109-120
    • /
    • 2008
  • ISO 10303-112 is an integrated application resource of ISO 10303, commonly known as STEP, and specifies the procedural_sketch schema. The ISO 10303-112 provides general resources for the representation of modeling commands for the exchange of procedurally represented 2D CAD models. Procedural models have the advantage of being easy to edit, simply by changing values of parameters of their constructional operations. Such models are said to embody design intent, in the sense that modifications to them conform to the method of creation used by their original creator, and they also comply with any constraints implied by the particular constructional operations used. This paper introduces the development and standardization process of the ISO 10303-112, and describes the concept of procedural 2D CAD modeling, the way to represent the procedural 2D CAD models in STEP and the harmonization with other STEP resources.

GeoMaTree : Geometric and Mathematical Model Based Digital Tree Authoring System

  • Jung, Seowon;Kim, Daeyeoul;Kim, Jinmo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.7
    • /
    • pp.3284-3306
    • /
    • 2018
  • This study proposes a method to develop an authoring system(GeoMaTree) for diverse trees that constitute a virtual landscape. The GeoMaTree system enables the simple, intuitive production of an efficient structure, and supports real-time processing. The core of the proposed system is a procedural modeling based on a mathematical model and an application that supports digital content creation on diverse platforms. The procedural modeling allows users to control the complex pattern of branch propagation through an intuitive process. The application is a multi-resolution 3D model that supports appropriate optimization for a tree structure. The application and a compatible function, with commercial tools for supporting the creation of realistic synthetic images and virtual landscapes, are implemented, and the proposed system is applied to a variety of 3D image content.

Developing the District Unit Plan Simulation using Procedural Modeling (절차적 모델링을 활용한 지구단위계획 시뮬레이션 개발)

  • Jun, Jin Hwan;Kim, Chung Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.546-559
    • /
    • 2021
  • This research aimed to develop the district unit plan simulation using procedural modeling based on shape grammar. For this, Esri's CityEngine 2020.0 was selected as a main development tool, and Inside Commercial Area in Bangi-dong, Songpa-gu, Seoul as the research site where about 25% of the total area was developed over the past five years. Specifically, the research developed the simulation through the following three phases of Data-Information-Knowledge after selecting necessary parameters. In the Data phase, 2 and 3 dimensional data were obtained by utilizing data sharing platforms. In the next Information phase, the acquired data were generated into various procedural models according to the shape grammar, and the 2D and 3D layers were then integrated using relevant applications. In the final Knowledge phase, three-dimensional spatial analysis and storytelling contents were produced based on the integrated layer. As a result, the research suggests the following three implications for the simulation development. First, data accuracy and improvement of sharing platforms are needed in order to effectively carry out the simulation development. Second, the guidelines for district unit plans could be utilized and developed into shape grammar for procedural modeling. Third, procedural modeling is expected to be used as an alternative tool for communication and information delivery.

Procedural Modeling Algorithm for Traditional Stone Fence Creator (전통 돌담 생성을 위한 절차적 모델링 알고리즘)

  • Park, Kyeongsu
    • Journal of Digital Convergence
    • /
    • v.11 no.8
    • /
    • pp.205-212
    • /
    • 2013
  • In this paper, we present a procedural modeling algorithms to create Korean traditional stone fence using the fractal subdivision. The main process of the algorithm is to get the next step mesh by subdividing each triangle in the previous step triangular mesh. This process is repeated recursively. Dividing each triangle into four sub-triangles after choosing a random point on each side of the triangle and moving each vertices in the normal direction with random perturbations make the bumpy appearance of stone fences. In each step we remove flat vertices which does not influence the shape of the stone. The discrete curvature determines the flatness of a vertex. New triangles whose vertices are the vertices around the removed vertex are added to make a triangular mesh.

Procedural errors detected by cone beam tomography in cases with indication for retreatment: in vivo cross-sectional study

  • Henry Paul Valverde Haro;Carmen Rosa Garcia Rupaya;Flavio R. F. Alves
    • Restorative Dentistry and Endodontics
    • /
    • v.49 no.3
    • /
    • pp.26.1-26.14
    • /
    • 2024
  • Objectives: This study aimed to investigate the frequency and type of endodontic procedural errors in cases indicated for retreatment through cone-beam computed tomography (CBCT) analysis. Materials and Methods: The sample consisted of 96 CBCT scans, encompassing 122 permanent teeth with fully formed roots. Errors included perforation, instrument fracture, canal transportation, missed canals, and inadequate apical limit of filling. Additionally, potential risk factors were analyzed and subjected to statistical modeling. Results: The most frequent procedural error observed was the inadequate apical limit of filling, followed by canal transportation, perforation, missed canal, and instrument fracture. Statistically significant associations were identified between various procedural errors and specific factors. These include canal transportation and root canal wall, with the buccal wall being the most commonly affected; missed canal and tooth type, particularly the palatine and second mesiobuccal canal canals; inadequate apical limit of filling and root curvature, showing a higher deviation to the mesial direction in severely curved canals; inadequate apical limit of filling and the presence of calcifications, with underfilling being the most frequent; canal transportation and periapical lesion, notably with deviation to the buccal direction; and the direction of perforation and periapical lesion, most frequently occurring to buccal direction. Conclusions: CBCT emerges as a valuable tool in identifying procedural errors and associated factors, crucial for their prevention and management.

General problem solver를 이용한 intelligent LP 모형화에 대한 연구

  • 박성주;권오병
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1991.10a
    • /
    • pp.469-474
    • /
    • 1991
  • Recent interests in intelligent LP modeling aim to support MS/OR-naive users to be able to apply LP models to practical problems without the expert knowledges required. For more generalized LP modeling, a GPS(General Problem Solver)-based approach is suggested in this paper. It identifies modeling process as a means-ends analysis process. In view of this approach, a) we first divide the knowledges into domain specific assertive knowledges(state) and procedural knowledges about LP modeling(operator and macro) for model-domain independence, b) and then generate LP model according to the difference resolution techniques.

  • PDF

Development of Digital Leaf Authoring Tool for Virtual Landscape Production (가상 조경 생성을위한 디지털 잎 저작도구 개발)

  • Kim, Jinmo
    • Journal of the Korea Computer Graphics Society
    • /
    • v.21 no.5
    • /
    • pp.1-10
    • /
    • 2015
  • This study proposes a method of developing authoring tool that can easily and intuitively generate diverse digital leaves that compose virtual landscape. The main system of the proposed authoring tool consists of deformation method for the contour of leaf blade based on image warping, procedural modeling of leaf vein and visualization method based on mathematical model that expresses the color and brightness of leaves. First, the proposed authoring tool receives leaf input image and searches for contour information on the leaf blades. It then designs leaf blade deformation method that can generate diverse shapes of leaf blades in an intuitive structure using feature-based image warping. Based on the computed leaf blade contour, the system implements the generalized procedural modeling method suitable for the authoring tool that generates natural vein patterns appropriate for the leaf blade shape. Finally, the system applies visualization function that can express color and brightness of leaves and their changes over time using a mathematical model based on convolution sums of divisor functions. This paper provides texture support function so that the digital leaves that were generated using the proposed authoring tool can be used in a variety of three-dimensional digital contents field.

Contour-based Procedural Modeling of Leaf Venation Patterns (컨투어기반 잎맥 패턴의 절차적 모델링)

  • Kim, Jin-Mo
    • Journal of Korea Game Society
    • /
    • v.14 no.5
    • /
    • pp.97-106
    • /
    • 2014
  • This study proposes an efficient method to model various and diverse leaves required to express digital plants such as flowers and trees in virtual landscape easily and intuitively. The proposed procedural method divides a leaf mainly into a blade and vein thereby detecting contours from binary images that correspond to blades and generating leaves by modeling leaf veins procedurally based on the detected contours. First of all, a complicated leaf vein structure is divided into main veins, lateral veins, and tertiary vein while all veins grow procedurally directing from start auxin to destination auxin. Here, to calculate destination auxin required for growth automatically, approximated contours from binary images that correspond to blades are found thereby calculating candidate destination auxin. Finally, natural digital leaves are generated by applying a color combination method. Through the proposed method, natural and various leaves can be generated and whether the proposed method is efficient or not is verified through the experiment.