References
- 교육부(2019). 초등학교 수학 5-1. (주) 천재교육.
- 김희리, 김성준(2020). 초등학생의 최대공약수에 대한 이해 분석. 학습자중심교과교육연구, 20(9), 21-47.
- 방정숙, 이유진(2018). 최대공약수와 최소공배수를 구하는 과정에서 의미를 강조한 지도방안 탐색. 한국초등수학교육학회지, 22(3), 283-308.
- 손승현, 서유진, 이주영, 문주영(2011). 초등수학 사실적, 개념적, 절차적 지식 교수를 위한 증거기반 중재의 실제. 초등교육연구, 24(3), 217-245.
- 신은주, 이종희(2004). 모델링 과정에서 지각적, 인지적, 메타인지적 활동의 상호작용에 관한 사례연구. 학교수학, 6(2), 153-179.
- 이상덕, 김화수(2004). 약수의 관계적 이해에 관한 내용 연구 -스키마(Schema)를 중심으로-. 수학교육논문집, 18(1), 111-121.
- 장혜원, 최혜령, 강윤지, 김은혜(2019). 초등학교 저학년을 위한 수학적 모델링 과제 개발 및 적용 가능성 탐색. 한국초등수학교육학회지, 23(1), 93-117.
- 정혜윤, 이경화, 백도현, 정진호, 임경석(2018). 수학적 모델링 관점에 의한 수학과제 탐구 과목용 과제의 설계. 학교수학, 20(1), 149-169.
- 최지영, 강완(2003). 초등학교 수학 교과서에 나타난 약수와 배수 지도 방법 분석. 한국초등수학교육학회지, 7(1), 45-64.
- Baroody, A.J., & Lai, M. (2007). Preschoolers' understanding of the addition-subtraction inversion principle: A Taiwanese study. Mathematical Thinking and Learning, 9(2), 131-171.
- Blum, W., & Leiss, D. (2007). How do students and teachers deal with mathematical modelling problems? The example sugarloaf and the DISUM project. In C. Haines, P. L. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical modelling (ICTMA 12): Education, engineering and economics (pp. 222-231). Horwood.
- Byrnes, J. P. (1992). The conceptual basis of procedural learning. Cognitive Development, 7(2), 235-257. https://doi.org/10.1016/0885-2014(92)90013-H
- Crooks, N. M., & Alibali, M. W. (2014). Defining and measuring conceptual knowledge in mathematics. Developmental Review, 34(4), 344-377. https://doi.org/10.1016/j.dr.2014.10.
- Ferri, R. B. (2018). Learning how to teach mathematical modeling in school and teacher education. Springer Cham.
- Hennig, C. (2010). Mathematical models and reality: A constructivist perspective. Foundations of Science, 15(1), 29-48. https://doi.org/10.1007/s10699-009-9167-x
- Hiebert, J. (1986). Conceptual and procedural knowledge: The case of mathematics. Erlbaum.
- Hiebert, J., & Lefevre, P. (1986). Conceptual and procedural knowledge in mathematics: an introductory analysis. In J. Hiebert (Ed.), Conceptual and procedural knowledge: The case of mathematics (pp. 1-27). Erlbaum. G.
- Lege, G. (2003). A Comparative case study of contrasting instructional approaches applied to the instruction of mathematical modeling. Columbia University.
- Lesh, R., Hoover, M., Hole, B., Kelly, A., & Post, T. (2000). Principles for developing thought-revealing activities for students and teachers. In A. Kelly, & R. Lesh (Eds.), Research design in mathematics and science education. (pp. 591-646). Lawrence Erlbaum Associates.
- Maass, K. (2007). Modelling in class: What do we want the students to learn? In C. Haines, P. Galbraith, W. Blum, S. Khan, & Mathematical Modelling (Eds.), Education, engineering and economics (pp. 65-78). Chichester: Horwood Publishing.
- Nahdi, D. S. & Jatisunda, M. G. (2020). Conceptual understanding and procedural knowledge: A case study on learning mathematics of fractional material in elementary school. Journal of Physics: Conference Series, 1477(4), 04237. https://doi.org/10.1088/1742-6596/1477/4/042037.
- National Research Council. (1989). Everybody counts: A report to the nation on the future of mathematics education. The National Academies Press.
- Nesher, P. (1986). Learning mathematics: A cognitive perspective. American Psychologist, 41(10), 1114-1122. https://doi.org/10.1037/0003-066X.41.10.1114
- Oswalt, S. (2012). Mathematical modeling in the high school classroom. Louisiana State University.
- Rittle-Johnson, B., & Alibali, M. W. (1999). Conceptual and procedural knowledge of mathematics: Does one lead to the other? Journal of Educational Psychology, 91(1), 175-189. https://doi.org/10.1037/0022-0663.91.1.175
- Rittle-Johnson, B., & Koedinger, K. R. (2005). Designing knowledge scaffolds to support mathematical problem solving. Cognition and Instruction, 23(3), 313-349. https://doi.org/10.1207/s1532690xci2303_1
- Rittle-Johnson, B., Siegler, R. S., & Alibali, M. W. (2001). Developing conceptual understanding and procedural skill in mathematics. An iterative process. Journal of Educational Psychology, 93(2), 346-362. https://doi.org/10.1037/0022-0663.93.2.346
- Romberg, T. A. (1994). Classroom instruction that fosters mathematical thinking an connections between theory and practice. In A. H. Schoenfeld (Ed.), Mathematical thinking and problem solving (pp. 287-304). Erlbaum.
- Soheil, S. & Naji, Q. (2021). Impact of the mathematical modeling on conceptual understanding among students' teachers. Journal of Southwest Jiaotong University, 56(5), 538-551
- Zulkarnaen, R. (2018). Why is mathematical modeling so difficult for students? Proceedings of the AIP Conference, 2021(1), 060026. AIP Publishing LLC.