• Title/Summary/Keyword: Problem-focused learning

Search Result 318, Processing Time 0.036 seconds

Analysis of Earth Science Area among Competency-Based Elementary Science Gifted Education Programs (역량중심 초등과학 영재교육 프로그램 지구과학 영역 분석)

  • Kim, Ye-Bin;Kim, Soon-Shik
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.14 no.2
    • /
    • pp.136-145
    • /
    • 2021
  • The Gifted Education Program is re-constructured into core competency-based program in line with fourth industrial revolution, where talented people with comprehensive ability are required. Therefore, competency-based elementary science gifted education program which is provided from Gifted Education Database(GED) is developed in accordance with 2015 revised edition in science and 5 main core-abilities; scientific thinking ability, scientific investigation ability, scientific problem solving ability, scientific communication ability and scientific participation and lifelong learning ability. This research, which is provided from GED, is focused on earth science area among competency-based elementary science gifted education program and analyse quantitatively and qualitatively how science and core-ability is appeared in 3 programs developed in science area. This research can be another guideline when someone would like to use competency-based earth science gifted education program in gifted education. Also, the purpose of this research is to help suggesting a right direction for competency-based earth science gifted education program. The conclusion based on research problem is as follow; Firstly, in competency-based earth science gifted education program, influence rates of scientific communication ability and scientific thinking ability are highest, where influence rates of scientific investigation ability, scientific problem solving ability and scientific participation and lifelong learning ability are relatively low. Secondly, in competency-based earth science gifted education program, single activity may includes several core-abilities. Following research is quite meaningful in aspect of giving out the information to choose topic in core-ability when using competency-based earth science gifted education program in gifted education. Also by supplementing lowly-influenced ability in competency-based earth science gifted education program, it is expected for gifted students to build scientific core-ability.

The Study on the Influence of Capstone Design & Field Training on Employment Rate: Focused on Leaders in INdustry-university Cooperation(LINC) (캡스톤디자인 및 현장실습이 취업률에 미치는 영향: 산학협력선도대학(LINC)을 중심으로)

  • Park Namgue
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.18 no.4
    • /
    • pp.207-222
    • /
    • 2023
  • In order to improve employment rates, most universities operate programs to strengthen students' employment and entrepreneurship, regardless of whether they are selected as the Leading Industry-Innovative University (LINC) or not. In particular, in the case of non-metropolitan universities are risking their lives to improve employment rates. In order to overcome the limitations of university establishment type and university location, which absolutely affect the employment rate, we are operating a startup education & startup support program in order to strengthen employment and entrepreneurship, and capstone design & field training as industry-academia-linked education programs are always available. Although there are studies on effectiveness verification centered on LINC (Leaders in Industry-University Cooperation) in previous studies, but a longitudinal study was conducted on all factors of university factors, startup education & startup support, and capstone design & field training as industry-university-linked education programs as factors affecting the employment rate based on public disclosure indicators. No cases of longitudinal studies were reported. This study targets 116 universities that satisfy the conditions based on university disclosure indicators from 2018 to 2020 that were recently released on university factors, startup education & startup support, and capstone design & field training as industry-academia-linked education programs as factors affecting the employment rate. We analyzed the differences between the LINC (Leaders in Industry-University Cooperation) 51 participating universities and 64 non-participating universities. In addition, considering that there is no historical information on the overlapping participation of participating students due to the limitations of public indicators, the Exposure Effect theory states that long-term exposure to employment and entrepreneurship competency enhancement programs will affect the employment rate through competency enhancement. Based on this, the effectiveness of the 2nd LINC+ (socially customized Leaders in Industry-University Cooperation) was verified from 2017 to 2021 through a longitudinal causal relationship analysis. As a result of the study, it was found that the startup education & startup support and capstone design & field training as industry-academia-linked education programs of the 2nd LINC+ (socially customized Leaders in Industry-University Cooperation) did not affect the employment rate. As a result of the longitudinal causal relationship analysis, it was reconfirmed that universities in metropolitan areas still have higher employment rates than universities in non-metropolitan areas due to existing university factors, and that private universities have higher employment rates than national universities. Among employment and entrepreneurship competency strengthening programs, the number of people who complete entrepreneurship courses, the number of people who complete capstone design, the amount of capstone design payment, and the number of dedicated faculty members partially affect the employment rate by year, while field training has no effect at all by year. It was confirmed that long-term exposure to the entrepreneurship capacity building program did not affect the employment rate. Therefore, it was reconfirmed that in order to improve the employment rate of universities, the limitations of non-metropolitan areas and national and public universities must be overcome. To overcome this, as a program to strengthen employment and entrepreneurship capabilities, it is important to strengthen entrepreneurship through participation in entrepreneurship lectures and actively introduce and be confident in the capstone design program that strengthens the concept of PBL (Problem Based Learning), and the field training program improves the employment rate. In order for actually field training affect of the employment rate, it is necessary to proceed with a substantial program through reorganization of the overall academic system and organization.

  • PDF

Exploring Pre-Service Earth Science Teachers' Understandings of Computational Thinking (지구과학 예비교사들의 컴퓨팅 사고에 대한 인식 탐색)

  • Young Shin Park;Ki Rak Park
    • Journal of the Korean earth science society
    • /
    • v.45 no.3
    • /
    • pp.260-276
    • /
    • 2024
  • The purpose of this study is to explore whether pre-service teachers majoring in earth science improve their perception of computational thinking through STEAM classes focused on engineering-based wave power plants. The STEAM class involved designing the most efficient wave power plant model. The survey on computational thinking practices, developed from previous research, was administered to 15 Earth science pre-service teachers to gauge their understanding of computational thinking. Each group developed an efficient wave power plant model based on the scientific principal of turbine operation using waves. The activities included problem recognition (problem solving), coding (coding and programming), creating a wave power plant model using a 3D printer (design and create model), and evaluating the output to correct errors (debugging). The pre-service teachers showed a high level of recognition of computational thinking practices, particularly in "logical thinking," with the top five practices out of 14 averaging five points each. However, participants lacked a clear understanding of certain computational thinking practices such as abstraction, problem decomposition, and using bid data, with their comprehension of these decreasing after the STEAM lesson. Although there was a significant reduction in the misconception that computational thinking is "playing online games" (from 4.06 to 0.86), some participants still equated it with "thinking like a computer" and "using a computer to do calculations". The study found slight improvements in "problem solving" (3.73 to 4.33), "pattern recognition" (3.53 to 3.66), and "best tool selection" (4.26 to 4.66). To enhance computational thinking skills, a practice-oriented curriculum should be offered. Additional STEAM classes on diverse topics could lead to a significant improvement in computational thinking practices. Therefore, establishing an educational curriculum for multisituational learning is essential.

Secondary Teachers' Perceptions and Needs Analysis on Integrative STEM Education (통합 STEM 교육에 대한 중등 교사의 인식과 요구)

  • Lee, Hyo-Nyong;Son, Dong-Il;Kwon, Hyuk-Soo;Park, Kyung-Suk;Han, In-Ki;Jung, Hyun-Il;Lee, Seong-Soo;Oh, Hee-Jin;Nam, Jung-Chul;Oh, Young-Jai;Phang, Seong-Hye;Seo, Bo-Hyun
    • Journal of The Korean Association For Science Education
    • /
    • v.32 no.1
    • /
    • pp.30-45
    • /
    • 2012
  • Educational communities around the world have concentrated on integrative efforts among science, technology, engineering and mathematics (Science, Technology, Engineering, and Mathematics: STEM) subjects. Korea has focused on integrative education among STEAM (Science, Technology, Engineering, Arts, and Mathematics) school subjects to raise talented human resources in the fields of science and technology. The purpose of this study was to analyze secondary school science, technology, and mathematics teacher's perceptions and needs toward integrated education and integrative STEM education. A total of 251 secondary school teachers from all areas of the country who have taught science, mathematics, and technology were surveyed by using a self-reported instrument. The findings were as follows: First, teachers have used little integrated education in their classes due to insufficient time in the actual preparation of the integrated education and the lack of expertise, teaching experience, and teaching-learning materials for the integrated education, while they have positive thoughts about the need of integrated education. Second, they presented several needs to facilitate the integrated education: development of a variety of integrated programs, school administrative and financial support, and in-service teachers' training. Third, overall perception toward integrated STEM education was not sufficient, but most teachers perceived the need toward integrated STEM education due to students' development in their creativity, thinking skills, and adaptability. Fourth, they perceived that it was imperative to develop the various integrated STEM education programs, distribute the materials, and help STEM teachers' understanding toward integrated STEM education. Fifth, they perceived that the most relevant method to integrate STEM subjects was the problem solving approach. In addition, they appreciate that the integrated STEM education is highly efficient in not only developing integrated problem solving skills and STEM related literacy, but also in positively impacting the rise of talented human resources in the fields of science and technology. In order to increase the awareness of STEM-related secondary school teachers and vitalize the integrated STEM education, it is necessary to develop and spread a variety of programs, effective teaching and learning materials, and teachers' training programs.

Incremental Generation of A Decision Tree Using Global Discretization For Large Data (대용량 데이터를 위한 전역적 범주화를 이용한 결정 트리의 순차적 생성)

  • Han, Kyong-Sik;Lee, Soo-Won
    • The KIPS Transactions:PartB
    • /
    • v.12B no.4 s.100
    • /
    • pp.487-498
    • /
    • 2005
  • Recently, It has focused on decision tree algorithm that can handle large dataset. However, because most of these algorithms for large datasets process data in a batch mode, if new data is added, they have to rebuild the tree from scratch. h more efficient approach to reducing the cost problem of rebuilding is an approach that builds a tree incrementally. Representative algorithms for incremental tree construction methods are BOAT and ITI and most of these algorithms use a local discretization method to handle the numeric data type. However, because a discretization requires sorted numeric data in situation of processing large data sets, a global discretization method that sorts all data only once is more suitable than a local discretization method that sorts in every node. This paper proposes an incremental tree construction method that efficiently rebuilds a tree using a global discretization method to handle the numeric data type. When new data is added, new categories influenced by the data should be recreated, and then the tree structure should be changed in accordance with category changes. This paper proposes a method that extracts sample points and performs discretiration from these sample points to recreate categories efficiently and uses confidence intervals and a tree restructuring method to adjust tree structure to category changes. In this study, an experiment using people database was made to compare the proposed method with the existing one that uses a local discretization.

An exploratory study for the development of a education framework for supporting children's development in the convergence of "art activity" and "language activity": Focused on Text mining method ('미술'과 '언어' 활동 융합형의 아동 발달지원 교육 프레임워크 개발을 위한 탐색적 연구: 텍스트 마이닝을 중심으로)

  • Park, Yunmi;Kim, Sijeong
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.3
    • /
    • pp.297-304
    • /
    • 2021
  • This study aims not only to access the visual thought-oriented approach that has been implemented in established art therapy and education but also to integrate language education and therapeutic approach to support the development of school-age children. Thus, text mining technique was applied to search for areas where different areas of language and art can be integrated. This research was conducted in accordance with the procedure of basic research, preliminary DB construction, text screening, DB pre-processing and confirmation, stop-words removing, text mining analysis and the deduction about the convergent areas. These results demonstrated that this study draws convergence areas related to regional, communication, and learning functions, areas related to problem solving and sensory organs, areas related to art and intelligence, areas related to information and communication, areas related to home and disability, topics, conceptualization, peer-related areas, integration, reorganization, attitudes. In conclusion, this study is meaningful in that it established a framework for designing an activity-centered convergence program of art and language in the future and attempted a holistic approach to support child development.

Direction of Emergency Rescue Education Based on the Experience of New 119 Paramedics for National Health Promotion (국민건강증진을 위한 응급구조학 교육의 나아갈 방향 -신임 119구급대원의 출동경험을 바탕으로-)

  • Kim, Jung-Sun
    • Journal of Korea Entertainment Industry Association
    • /
    • v.15 no.1
    • /
    • pp.207-220
    • /
    • 2021
  • The purpose of the study is to investigate the application and utility of emergency rescue education and derive limitations, improvements and development directions of university education based on the field experience of 119 emergency medical technician(EMT)s. The research subjects were six new 119 emergency medical technician(EMT)s within three years of starting their first-aid service in the field. After conducting in-depth narrative interviews, the analysis was performed using Colaizzi method. The 82 formulated meanings were derived from significant statements. From formulated meanings, 23 themes, 4 theme clusters, 2 categories were identified. The four theme clusters were 'The effectiveness of university education', 'The limitations of university education', 'The direction of improvement in educational methodology' and 'The direction of improvement in educational contents. University education has been helpful overall, but limitations are observed at the same time, suggesting that it should be developed through the improvement of educational methodologies (i.e. problem-based learning, field case review, education through role-playing, simulation education, strengthening skill ect.) and educational content (i.e. training tailored to the field, education focused on trauma or cardiac arrest, expansion of triage education in disaster management, reinforcement of education on-site safety, education on special patients, diverse guidance and faculty for different perspectives).

An Exploratory Study on Ethical Culture Leadership - Focused on the Case of King Sejong' Leadership - (윤리문화적 리더십 모형에관한탐색적연구 - 세종대왕 리더십 사례를중심으로-)

  • Cho, Hyun-Bong
    • Journal of Ethics
    • /
    • no.97
    • /
    • pp.279-306
    • /
    • 2014
  • This study presents the leadership model that is to build of ethical and cultural leadership. This model is to operat the functions of a systemof leadership that based on the universal principles of life, that is performed bybalance and harmonized judgment of the ideal ethical oughtfulness and cultural values, and practise ethically through relationship, process, and skill of leadership. And this model turn out to lead a real impact and then overcome conflict, problem solving, motivation. To check the validity of leadership, this study analysis the case study of leadership of King Sejong. His leadership is based at heaven that on the basis of the universal principles of life. The ideal ethical oughtfulness is to cares for people and the value of the cultural is to cherish the people's will. His leadership is to be balance and harmonized judgment of the ideal ethical oughtfulness and the cultural values by practice of virtues through relationship, process, and skill of leadership. Leadership relationship is a equal role relationship that are the children of the sky, thus to be coexistence and harmonyin close collaboration. Leadership process is a process of transvaluation to ensure the validity of the values by rational discussion and persuasion. Leadership skills led to active obedience through leading by example and love of learning. King Sejong' leadership is the leadership that ethical and cultural leadership become well-implemented.

A Study on Real-time Autonomous Driving Simulation System Construction based on Digital Twin - Focused on Busan EDC - (디지털트윈 기반 실시간 자율주행 시뮬레이션 시스템 구축 방안 연구 - 부산 EDC 중심으로 -)

  • Kim, Min-Soo;Park, Jong-Hyun;Sim, Min-Seok
    • Journal of Cadastre & Land InformatiX
    • /
    • v.53 no.2
    • /
    • pp.53-66
    • /
    • 2023
  • Recently, there has been a significant interest in the development of autonomous driving simulation environment based on digital twin. In the development of such digital twin-based simulation environment, many researches has been conducted not only performance and functionality validation of autonomous driving, but also generation of virtual training data for deep learning. However, such digital twin-based autonomous driving simulation system has the problem of requiring a significant amount of time and cost for the system development and the data construction. Therefore, in this research, we aim to propose a method for rapidly designing and implementing a digital twin-based autonomous driving simulation system, using only the existing 3D models and high-definition map. Specifically, we propose a method for integrating 3D model of FBX and NGII HD Map for the Busan EDC area into CARLA, and a method for adding and modifying CARLA functions. The results of this research show that it is possible to rapidly design and implement the simulation system at a low cost by using the existing 3D models and NGII HD map. Also, the results show that our system can support various functions such as simulation scenario configuration, user-defined driving, and real-time simulation of traffic light states. We expect that usability of the system will be significantly improved when it is applied to broader geographical area in the future.

Investigating Dynamic Mutation Process of Issues Using Unstructured Text Analysis (부도예측을 위한 KNN 앙상블 모형의 동시 최적화)

  • Min, Sung-Hwan
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.139-157
    • /
    • 2016
  • Bankruptcy involves considerable costs, so it can have significant effects on a country's economy. Thus, bankruptcy prediction is an important issue. Over the past several decades, many researchers have addressed topics associated with bankruptcy prediction. Early research on bankruptcy prediction employed conventional statistical methods such as univariate analysis, discriminant analysis, multiple regression, and logistic regression. Later on, many studies began utilizing artificial intelligence techniques such as inductive learning, neural networks, and case-based reasoning. Currently, ensemble models are being utilized to enhance the accuracy of bankruptcy prediction. Ensemble classification involves combining multiple classifiers to obtain more accurate predictions than those obtained using individual models. Ensemble learning techniques are known to be very useful for improving the generalization ability of the classifier. Base classifiers in the ensemble must be as accurate and diverse as possible in order to enhance the generalization ability of an ensemble model. Commonly used methods for constructing ensemble classifiers include bagging, boosting, and random subspace. The random subspace method selects a random feature subset for each classifier from the original feature space to diversify the base classifiers of an ensemble. Each ensemble member is trained by a randomly chosen feature subspace from the original feature set, and predictions from each ensemble member are combined by an aggregation method. The k-nearest neighbors (KNN) classifier is robust with respect to variations in the dataset but is very sensitive to changes in the feature space. For this reason, KNN is a good classifier for the random subspace method. The KNN random subspace ensemble model has been shown to be very effective for improving an individual KNN model. The k parameter of KNN base classifiers and selected feature subsets for base classifiers play an important role in determining the performance of the KNN ensemble model. However, few studies have focused on optimizing the k parameter and feature subsets of base classifiers in the ensemble. This study proposed a new ensemble method that improves upon the performance KNN ensemble model by optimizing both k parameters and feature subsets of base classifiers. A genetic algorithm was used to optimize the KNN ensemble model and improve the prediction accuracy of the ensemble model. The proposed model was applied to a bankruptcy prediction problem by using a real dataset from Korean companies. The research data included 1800 externally non-audited firms that filed for bankruptcy (900 cases) or non-bankruptcy (900 cases). Initially, the dataset consisted of 134 financial ratios. Prior to the experiments, 75 financial ratios were selected based on an independent sample t-test of each financial ratio as an input variable and bankruptcy or non-bankruptcy as an output variable. Of these, 24 financial ratios were selected by using a logistic regression backward feature selection method. The complete dataset was separated into two parts: training and validation. The training dataset was further divided into two portions: one for the training model and the other to avoid overfitting. The prediction accuracy against this dataset was used to determine the fitness value in order to avoid overfitting. The validation dataset was used to evaluate the effectiveness of the final model. A 10-fold cross-validation was implemented to compare the performances of the proposed model and other models. To evaluate the effectiveness of the proposed model, the classification accuracy of the proposed model was compared with that of other models. The Q-statistic values and average classification accuracies of base classifiers were investigated. The experimental results showed that the proposed model outperformed other models, such as the single model and random subspace ensemble model.