• Title/Summary/Keyword: Problem features

Search Result 1,863, Processing Time 0.033 seconds

FRS-OCC: Face Recognition System for Surveillance Based on Occlusion Invariant Technique

  • Abbas, Qaisar
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.8
    • /
    • pp.288-296
    • /
    • 2021
  • Automated face recognition in a runtime environment is gaining more and more important in the fields of surveillance and urban security. This is a difficult task keeping in mind the constantly volatile image landscape with varying features and attributes. For a system to be beneficial in industrial settings, it is pertinent that its efficiency isn't compromised when running on roads, intersections, and busy streets. However, recognition in such uncontrolled circumstances is a major problem in real-life applications. In this paper, the main problem of face recognition in which full face is not visible (Occlusion). This is a common occurrence as any person can change his features by wearing a scarf, sunglass or by merely growing a mustache or beard. Such types of discrepancies in facial appearance are frequently stumbled upon in an uncontrolled circumstance and possibly will be a reason to the security systems which are based upon face recognition. These types of variations are very common in a real-life environment. It has been analyzed that it has been studied less in literature but now researchers have a major focus on this type of variation. Existing state-of-the-art techniques suffer from several limitations. Most significant amongst them are low level of usability and poor response time in case of any calamity. In this paper, an improved face recognition system is developed to solve the problem of occlusion known as FRS-OCC. To build the FRS-OCC system, the color and texture features are used and then an incremental learning algorithm (Learn++) to select more informative features. Afterward, the trained stack-based autoencoder (SAE) deep learning algorithm is used to recognize a human face. Overall, the FRS-OCC system is used to introduce such algorithms which enhance the response time to guarantee a benchmark quality of service in any situation. To test and evaluate the performance of the proposed FRS-OCC system, the AR face dataset is utilized. On average, the FRS-OCC system is outperformed and achieved SE of 98.82%, SP of 98.49%, AC of 98.76% and AUC of 0.9995 compared to other state-of-the-art methods. The obtained results indicate that the FRS-OCC system can be used in any surveillance application.

OPTIMAL PORTFOLIO SELECTION WITH TRANSACTION COSTS WHEN AN ILLIQUID ASSET PAYS CASH DIVIDENDS

  • Jang, Bong-Gyu
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.1
    • /
    • pp.139-150
    • /
    • 2007
  • We investigate an optimal portfolio selection problem with transaction costs when an illiquid asset pays cash dividends and there are constraints on the illiquid asset holding. We provide closed form solutions for the problem, and by using these solutions we illustrate interesting features of optimal policies.

Multiscale Spatial Position Coding under Locality Constraint for Action Recognition

  • Yang, Jiang-feng;Ma, Zheng;Xie, Mei
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1851-1863
    • /
    • 2015
  • – In the paper, to handle the problem of traditional bag-of-features model ignoring the spatial relationship of local features in human action recognition, we proposed a Multiscale Spatial Position Coding under Locality Constraint method. Specifically, to describe this spatial relationship, we proposed a mixed feature combining motion feature and multi-spatial-scale configuration. To utilize temporal information between features, sub spatial-temporal-volumes are built. Next, the pooled features of sub-STVs are obtained via max-pooling method. In classification stage, the Locality-Constrained Group Sparse Representation is adopted to utilize the intrinsic group information of the sub-STV features. The experimental results on the KTH, Weizmann, and UCF sports datasets show that our action recognition system outperforms the classical local ST feature-based recognition systems published recently.

Rotated face detection based on sharing features (특징들의 공유에 의한 기울어진 얼굴 검출)

  • Song, Young-Mo;Ko, Yun-Ho
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.31-33
    • /
    • 2009
  • Face detection using AdaBoost algorithm is capable of processing images rapidly while having high detection rates. It seemed to be the fastest and the most robust and it is still today. Many improvements or extensions of this method have been proposed. However, previous approaches only deal with upright faces. They suffer from limited discriminant capability for rotated faces as these methods apply the same features for both upright and rotated faces. To solve this problem, it is necessary that we rotate input images or make independently trained detectors. However, this can be slow and can require a lot of training data, since each classifier requires the computation of many different image features. This paper proposes a robust algorithm for finding rotated faces within an image. It reduces the computational and sample complexity, by finding common features that can be shared across the classes. And it will be able to apply with multi-class object detection.

  • PDF

Multi-constrained optimization combining ARMAX with differential search for damage assessment

  • K, Lakshmi;A, Rama Mohan Rao
    • Structural Engineering and Mechanics
    • /
    • v.72 no.6
    • /
    • pp.689-712
    • /
    • 2019
  • Time-series models like AR-ARX and ARMAX, provide a robust way to capture the dynamic properties of structures, and their residuals can be effectively used as features for damage detection. Even though several research papers discuss the implementation of AR-ARX and ARMAX models for damage diagnosis, they are basically been exploited so far for detecting the time instant of damage and also the spatial location of the damage. However, the inverse problem associated with damage quantification i.e. extent of damage using time series models is not been reported in the literature. In this paper, an approach to detect the extent of damage by combining the ARMAX model by formulating the inverse problem as a multi-constrained optimization problem and solving using a newly developed hybrid adaptive differential search with dynamic interaction is presented. The proposed variant of the differential search technique employs small multiple populations which perform the search independently and exchange the information with the dynamic neighborhood. The adaptive features and local search ability features are built into the algorithm in order to improve the convergence characteristics and also the overall performance of the technique. The multi-constrained optimization formulations of the inverse problem, associated with damage quantification using time series models, attempted here for the first time, can considerably improve the robustness of the search process. Numerical simulation studies have been carried out by considering three numerical examples to demonstrate the effectiveness of the proposed technique in robustly identifying the extent of the damage. Issues related to modeling errors and also measurement noise are also addressed in this paper.

Analysis of the Effectiveness of a Problem-based Digital Textbook

  • Park, Chan-Seok;Kim, Mi-Hye;Yoo, Kwan-Hee
    • International Journal of Contents
    • /
    • v.8 no.2
    • /
    • pp.23-27
    • /
    • 2012
  • The successful use of digital textbooks (DTs) in schools requires the development of various teaching and learning methods that are appropriate for DTs. However, recent DT studies have focused mainly on the implementation of DT features and formats. The objective of this study was to investigate a problem-based learning instructional model appropriate to DTs and to present the experimental results using the problem-based DT to demonstrate its educational effectiveness. Two learning-achievements tests were conducted to analyze the learning experience and effectiveness of the problem-based DT after it had been used in a high school for a certain period. The experimental results indicated that the students who used the DT, especially lower-level students, exhibited improved problem-solving ability and demonstrated a better practical understanding of the subject than students who used printed textbooks.

A Preliminary Study on the Repeatability of Facial Feature Variables Used in the Sasang Constitutional Diagnosis (체질진단에 활용되는 안면 특징 변수들의 반복성에 대한 예비 연구)

  • Roh, Min-Yeong;Kim, Jong-Yeol;Do, Jun-Hyeong
    • Journal of Sasang Constitutional Medicine
    • /
    • v.29 no.1
    • /
    • pp.29-39
    • /
    • 2017
  • Objectives Facial features can be utilized as an indicator of Korean medical diagnosis. They are often measured by using the diagnostic device for an objective diagnosis. Accordingly, it is necessary to verify the reliability of the features which are obtained from the device for the accurate diagnosis. In this study, we attempt to evaluate the repeatability of facial feature variables using the Sasang Constitutional Analysis Tool(SCAT) for the Sasang Constitutional face diagnosis. Methods Facial pictures of two subjects were taken 24 times respectively for two days according to a standard guideline. In order to evaluate the repeatability, the coefficient of variation was calculated for the facial features extracted from frontal and profile images. Results The coefficient of variation was less than 10% in most of the facial features except the upper lip, trichion, and chins related features. Conclusions It was confirmed that the coefficient of variation was small in most of the features which enables the objective and reliable analysis of face. However, some features showed the low reliability because the location of facial landmarks related to them is ambiguous. In order to solve the problem, a clear basis for the location discussion is required.

Video Representation via Fusion of Static and Motion Features Applied to Human Activity Recognition

  • Arif, Sheeraz;Wang, Jing;Fei, Zesong;Hussain, Fida
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.7
    • /
    • pp.3599-3619
    • /
    • 2019
  • In human activity recognition system both static and motion information play crucial role for efficient and competitive results. Most of the existing methods are insufficient to extract video features and unable to investigate the level of contribution of both (Static and Motion) components. Our work highlights this problem and proposes Static-Motion fused features descriptor (SMFD), which intelligently leverages both static and motion features in the form of descriptor. First, static features are learned by two-stream 3D convolutional neural network. Second, trajectories are extracted by tracking key points and only those trajectories have been selected which are located in central region of the original video frame in order to to reduce irrelevant background trajectories as well computational complexity. Then, shape and motion descriptors are obtained along with key points by using SIFT flow. Next, cholesky transformation is introduced to fuse static and motion feature vectors to guarantee the equal contribution of all descriptors. Finally, Long Short-Term Memory (LSTM) network is utilized to discover long-term temporal dependencies and final prediction. To confirm the effectiveness of the proposed approach, extensive experiments have been conducted on three well-known datasets i.e. UCF101, HMDB51 and YouTube. Findings shows that the resulting recognition system is on par with state-of-the-art methods.

A Robust Fingerprint Classification using SVMs with Adaptive Features (지지벡터기계와 적응적 특징을 이용한 강인한 지문분류)

  • Min, Jun-Ki;Cho, Sung-Bae
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.1
    • /
    • pp.41-49
    • /
    • 2008
  • Fingerprint classification is useful to reduce the matching time of a huge fingerprint identification system by categorizing fingerprints into predefined classes according to their global features. Although global features are distributed diversly because of the uniqueness of a fingerprint, previous fingerprint classification methods extract global features non-adaptively from the fixed region for every fingerprint. We propose an novel method that extracts features adaptively for each fingerprint in order to classify various fingerprints effectively. It extracts ridge directional values as feature vectors from the region after searching the feature region by calculating variations of ridge directions, and classifies them using support vector machines. Experimental results with NIST4 database show that we have achieved a classification accuracy of 90.3% for the five-class problem and 93.7% for the four-class problem, and proved the validity of the proposed adaptive method by comparison with non-adaptively extracted feature vectors.

An optimal feature selection algorithm for the network intrusion detection system (네트워크 침입 탐지를 위한 최적 특징 선택 알고리즘)

  • Jung, Seung-Hyun;Moon, Jun-Geol;Kang, Seung-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.342-345
    • /
    • 2014
  • Network intrusion detection system based on machine learning methods is quite dependent on the selected features in terms of accuracy and efficiency. Nevertheless, choosing the optimal combination of features from generally used features to detect network intrusion requires extensive computing resources. For instance, the number of possible feature combinations from given n features is $2^n-1$. In this paper, to tackle this problem we propose a optimal feature selection algorithm. Proposed algorithm is based on the local search algorithm, one of representative meta-heuristic algorithm for solving optimization problem. In addition, the accuracy of clusters which obtained using selected feature components and k-means clustering algorithm is adopted to evaluate a feature assembly. In order to estimate the performance of our proposed algorithm, comparing with a method where all features are used on NSL-KDD data set and multi-layer perceptron.

  • PDF