• Title/Summary/Keyword: Problem based Learning

Search Result 3,046, Processing Time 0.034 seconds

Data collection strategy for building rainfall-runoff LSTM model predicting daily runoff (강수-일유출량 추정 LSTM 모형의 구축을 위한 자료 수집 방안)

  • Kim, Dongkyun;Kang, Seokkoo
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.10
    • /
    • pp.795-805
    • /
    • 2021
  • In this study, after developing an LSTM-based deep learning model for estimating daily runoff in the Soyang River Dam basin, the accuracy of the model for various combinations of model structure and input data was investigated. A model was built based on the database consisting of average daily precipitation, average daily temperature, average daily wind speed (input up to here), and daily average flow rate (output) during the first 12 years (1997.1.1-2008.12.31). The Nash-Sutcliffe Model Efficiency Coefficient (NSE) and RMSE were examined for validation using the flow discharge data of the later 12 years (2009.1.1-2020.12.31). The combination that showed the highest accuracy was the case in which all possible input data (12 years of daily precipitation, weather temperature, wind speed) were used on the LSTM model structure with 64 hidden units. The NSE and RMSE of the verification period were 0.862 and 76.8 m3/s, respectively. When the number of hidden units of LSTM exceeds 500, the performance degradation of the model due to overfitting begins to appear, and when the number of hidden units exceeds 1000, the overfitting problem becomes prominent. A model with very high performance (NSE=0.8~0.84) could be obtained when only 12 years of daily precipitation was used for model training. A model with reasonably high performance (NSE=0.63-0.85) when only one year of input data was used for model training. In particular, an accurate model (NSE=0.85) could be obtained if the one year of training data contains a wide magnitude of flow events such as extreme flow and droughts as well as normal events. If the training data includes both the normal and extreme flow rates, input data that is longer than 5 years did not significantly improve the model performance.

A Review of the Neurocognitive Mechanisms for Mathematical Thinking Ability (수학적 사고력에 관한 인지신경학적 연구 개관)

  • Kim, Yon Mi
    • Korean Journal of Cognitive Science
    • /
    • v.27 no.2
    • /
    • pp.159-219
    • /
    • 2016
  • Mathematical ability is important for academic achievement and technological renovations in the STEM disciplines. This study concentrated on the relationship between neural basis of mathematical cognition and its mechanisms. These cognitive functions include domain specific abilities such as numerical skills and visuospatial abilities, as well as domain general abilities which include language, long term memory, and working memory capacity. Individuals can perform higher cognitive functions such as abstract thinking and reasoning based on these basic cognitive functions. The next topic covered in this study is about individual differences in mathematical abilities. Neural efficiency theory was incorporated in this study to view mathematical talent. According to the theory, a person with mathematical talent uses his or her brain more efficiently than the effortful endeavour of the average human being. Mathematically gifted students show different brain activities when compared to average students. Interhemispheric and intrahemispheric connectivities are enhanced in those students, particularly in the right brain along fronto-parietal longitudinal fasciculus. The third topic deals with growth and development in mathematical capacity. As individuals mature, practice mathematical skills, and gain knowledge, such changes are reflected in cortical activation, which include changes in the activation level, redistribution, and reorganization in the supporting cortex. Among these, reorganization can be related to neural plasticity. Neural plasticity was observed in professional mathematicians and children with mathematical learning disabilities. Last topic is about mathematical creativity viewed from Neural Darwinism. When the brain is faced with a novel problem, it needs to collect all of the necessary concepts(knowledge) from long term memory, make multitudes of connections, and test which ones have the highest probability in helping solve the unusual problem. Having followed the above brain modifying steps, once the brain finally finds the correct response to the novel problem, the final response comes as a form of inspiration. For a novice, the first step of acquisition of knowledge structure is the most important. However, as expertise increases, the latter two stages of making connections and selection become more important.

Students' Perception of Scratch Program using High School Science Class (스크래치를 활용한 고등학교 과학 수업에 대한 학생 인식)

  • Noh, Hee Jin;Paik, Seoung Hye
    • Journal of The Korean Association For Science Education
    • /
    • v.35 no.1
    • /
    • pp.53-64
    • /
    • 2015
  • This research was performed of high school science classes. These science classes progressed by using Scratch, and surveyed students' perception after finishing each class. This research was conducted of male students who want to choose department of natural science in the next grade. Those classes are consisted of four classes. This study produced a journal, and contained expressions of their thinking and feeling based on experiences during attending classes and projects. Consequently, that journal was analyzed in view of understanding and perception of Scratch using science classes, and it was also included of utilizing Scratch program. Research shows following three conclusions. First, students preferred Scratch using class to general one. They attend more active with high interest, and they felt senses of accomplishment while they make output by themselves. Second, their studies passed through three stages. These are problem perception, problem solving, and producing. Problem solving stage is especially complicated and difficult stage to students. This stage is consisted of Scratch side and Science side. Scratch side has Design and applying process, and Science side has data gathering and analyzing. Students' comprehension of scientific knowledge is increased and is preserved long time through this stage. Last, students had a hard time using Scratch. Because, it is the first time to them to use that program. Therefore, we deemed that they needed to start this kind of experience at lower grade than they are now, such as middle school stage. It is expected that this type of classes are getting more expanded and more populated as a part of students' core ability.

A Study on the Prediction Model of Stock Price Index Trend based on GA-MSVM that Simultaneously Optimizes Feature and Instance Selection (입력변수 및 학습사례 선정을 동시에 최적화하는 GA-MSVM 기반 주가지수 추세 예측 모형에 관한 연구)

  • Lee, Jong-sik;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.4
    • /
    • pp.147-168
    • /
    • 2017
  • There have been many studies on accurate stock market forecasting in academia for a long time, and now there are also various forecasting models using various techniques. Recently, many attempts have been made to predict the stock index using various machine learning methods including Deep Learning. Although the fundamental analysis and the technical analysis method are used for the analysis of the traditional stock investment transaction, the technical analysis method is more useful for the application of the short-term transaction prediction or statistical and mathematical techniques. Most of the studies that have been conducted using these technical indicators have studied the model of predicting stock prices by binary classification - rising or falling - of stock market fluctuations in the future market (usually next trading day). However, it is also true that this binary classification has many unfavorable aspects in predicting trends, identifying trading signals, or signaling portfolio rebalancing. In this study, we try to predict the stock index by expanding the stock index trend (upward trend, boxed, downward trend) to the multiple classification system in the existing binary index method. In order to solve this multi-classification problem, a technique such as Multinomial Logistic Regression Analysis (MLOGIT), Multiple Discriminant Analysis (MDA) or Artificial Neural Networks (ANN) we propose an optimization model using Genetic Algorithm as a wrapper for improving the performance of this model using Multi-classification Support Vector Machines (MSVM), which has proved to be superior in prediction performance. In particular, the proposed model named GA-MSVM is designed to maximize model performance by optimizing not only the kernel function parameters of MSVM, but also the optimal selection of input variables (feature selection) as well as instance selection. In order to verify the performance of the proposed model, we applied the proposed method to the real data. The results show that the proposed method is more effective than the conventional multivariate SVM, which has been known to show the best prediction performance up to now, as well as existing artificial intelligence / data mining techniques such as MDA, MLOGIT, CBR, and it is confirmed that the prediction performance is better than this. Especially, it has been confirmed that the 'instance selection' plays a very important role in predicting the stock index trend, and it is confirmed that the improvement effect of the model is more important than other factors. To verify the usefulness of GA-MSVM, we applied it to Korea's real KOSPI200 stock index trend forecast. Our research is primarily aimed at predicting trend segments to capture signal acquisition or short-term trend transition points. The experimental data set includes technical indicators such as the price and volatility index (2004 ~ 2017) and macroeconomic data (interest rate, exchange rate, S&P 500, etc.) of KOSPI200 stock index in Korea. Using a variety of statistical methods including one-way ANOVA and stepwise MDA, 15 indicators were selected as candidate independent variables. The dependent variable, trend classification, was classified into three states: 1 (upward trend), 0 (boxed), and -1 (downward trend). 70% of the total data for each class was used for training and the remaining 30% was used for verifying. To verify the performance of the proposed model, several comparative model experiments such as MDA, MLOGIT, CBR, ANN and MSVM were conducted. MSVM has adopted the One-Against-One (OAO) approach, which is known as the most accurate approach among the various MSVM approaches. Although there are some limitations, the final experimental results demonstrate that the proposed model, GA-MSVM, performs at a significantly higher level than all comparative models.

Development of Health Promotion Program for Individuals With Arthritis -Application of Holistic Model- (관절염 환자를 위한 건강증진 프로그램의 개발 -총체적 모델의 적용-)

  • 오현수;김영란
    • Journal of Korean Academy of Nursing
    • /
    • v.29 no.2
    • /
    • pp.314-327
    • /
    • 1999
  • In this study, domains, contents, and effects of pre-existed intervention programs for individuals with arthritis were meta-analyzed to develop arthritis health promotion program based on Holistic Model. The developed program includes strategies of cognition, environment, and behavior. and also generates positive changes in the physical, psychological, and social demensions. Then needs assessment on conveniently selected 153 women who visited a university hospital in Seoul or in Inchon are conducted to identify the objective domains of arthritis health promotion program According to the study results. target health problems of the arthritis health promotion program were shown as pain, disability, depression, and role impediment in social domain. These objectives could be achieved by including the strategies of changing cognition, the strategies of changing behavior through learning the skill related to the health promoting behavior. and the strategies of changing environment in the health promotion program. That is, it is analyzed that the contents of program are not exclusive one another in physical. psychological. and social demensions, and also are not exclusive one another in aspect of cognition, behavior, and environment. The necessary methods to achieve the desired objectives for the developed arthritis health promotion program and evaluation subjects are as follows : (1) In the arthritis health promotion program, knowledge on management of arthritis, efficacy related to arthritis management, skill for pain management, skill for exercise, establishment of positive self-concept, enhancement of positive thinking, stress management. skill for problem solving, skill for setting goals. skill for requesting help, and skill for communication are all included. Through the improvement of all those strategies, intermediate objectives, such as “joint protection, and maintenance of pain management behavior”, “maintenance of regular exercise”, and “promotion of coping skill in psychosocial dimension” are achieved. (2) These intermediate objectives are also the methods for achieving objectives in next stage. It implies that through the intermediate objectives. the final objectives such as “minimization of physical symptoms and signs”, “maximization of psychological function”, and “maximazation of role performance in social domain” could be achieved. Each of these final objectives reflects the different dimension of quality of life, respectively. When these objectives are achieved, the quality of life that client perceives is improved. Therefore, through evaluation of these final objectives, the level of achieving final outcome of arthritis health promotion such as quality of life is determined.

  • PDF

RBM-based distributed representation of language (RBM을 이용한 언어의 분산 표상화)

  • You, Heejo;Nam, Kichun;Nam, Hosung
    • Korean Journal of Cognitive Science
    • /
    • v.28 no.2
    • /
    • pp.111-131
    • /
    • 2017
  • The connectionist model is one approach to studying language processing from a computational perspective. And building a representation in the connectionist model study is just as important as making the structure of the model in that it determines the level of learning and performance of the model. The connectionist model has been constructed in two different ways: localist representation and distributed representation. However, the localist representation used in the previous studies had limitations in that the unit of the output layer having a rare target activation value is inactivated, and the past distributed representation has the limitation of difficulty in confirming the result by the opacity of the displayed information. This has been a limitation of the overall connection model study. In this paper, we present a new method to induce distributed representation with local representation using abstraction of information, which is a feature of restricted Boltzmann machine, with respect to the limitation of such representation of the past. As a result, our proposed method effectively solves the problem of conventional representation by using the method of information compression and inverse transformation of distributed representation into local representation.

A Study on The Effect Quality Innovation of Convergence Management (융합경영이 품질혁신에 미치는 영향)

  • Choi, Seung-Il;Song, Seong-Bin
    • Journal of Digital Convergence
    • /
    • v.13 no.10
    • /
    • pp.99-106
    • /
    • 2015
  • The biggest change in modern society because we will transition to a ubiquitous environment. Changes in the environment has become a crucial instrument that finally opens the era of convergence management through integrating the various fields in their own business. The desire of consumers to new innovative products appears to be a constant thing companies are constantly trying to respond to these changes, there may not be a problem for the convergence of sustainability management company in the end. In this study, based on the convergence of corporate management need to be a fusion component of corporate management to examine whether any impact on the quality of innovation. Results showed that the fusion management components that affect both internal factors and external factors, core factors quality improvement. Internal factors detailed in the convergence management leadership, risk management factors showed a positive external factors affecting appeared to affect positively the knowledge-sharing factors, infrastructure factors. Finally, core factor is technology factors, educational learning factors showed a positive impact. This results suggest that be a big impact factors of competitiveness of enterprises through convergence management in the future and will serve as the strategic basis for the convergence of future corporate management.

Research on Ways to Improve Science Curriculum Focused on Key Competencies and Creative Fusion Education (핵심역량과 융합교육에 초점을 둔 과학과 교육과정 개선방향 연구)

  • Kwak, Youngsun;Son, Jeongwoo;Kim, Mi-Young;Ku, Jaok
    • Journal of The Korean Association For Science Education
    • /
    • v.34 no.3
    • /
    • pp.321-330
    • /
    • 2014
  • Changes are expected in the future, and the future society will expect changes in education. Science curriculum needs to reflect such demands for changes in the future of education. Hence, this study explored ways to reflect the changes demanded by the future society in science education. In this study, we investigated the major issues and directions for improvements based on the findings from questionnaires given to 447 primary and secondary school science teachers as well as in-depth interviews with 12 experts. We explored the problems of the 2009 revised national science curriculum including organization of science elective courses, fusion 'science' as an elective course, intensive course-taking of science, career-focused science curriculum, variation of completion units in science elective courses, and fairness of science elective course selection in college entrance. In addition, we proposed ways to organize science curriculum around core competencies and STEAM education suggested by science teachers. According to the results, we need to add such key competencies as basic learning abilities, self-identity, and moral competencies to science curriculum in addition to existing key competencies including problem solving and communication. Regarding the fusion science, experts contended that convergence of science courses should come before that of science and other subjects, and that STEAM with science as the axis was the desired form of convergence. We also need to establish a curriculum development center that exclusively focuses on science curriculum research and development.

A Review of the Neurocognitive Mechanisms of Number Sense (수 감각의 인지신경학적 기반에 관한 연구 개관)

  • Cho, Soohyun
    • Korean Journal of Cognitive Science
    • /
    • v.24 no.3
    • /
    • pp.271-300
    • /
    • 2013
  • Human and animals are born with an intuitive ability to determine approximate numerosity. This ability is termed approximate number sense (hereafter, number sense). Evolutionarily, number sense is thought to be an essential ability for hunting, gathering and survival. According to previous research, children with mathematical learning disability have impaired number sense. On the other hand, individuals with more accurate number sense have higher mathematical achievement. These results support the hypothesis that number sense provides a basis for the development of mathematical cognition. Recently, researchers have been examining whether number sense training can lead to enhancement in mathematical achievement and changes in brain activity in relation to mathematical problem solving. Numerosity which basically represents discontinuous quantity is expected to be closely related to continuous quantity such as representations of space and time. A theory of magnitude (ATOM) states that processing of number, space and time is based on a common magnitude system in the posterior parietal cortex, especially the intraparietal sulcus. The present paper introduces current literature and future directions for the study of the common magnitude system.

  • PDF

A Study on Testing the Korean Cataloguing Rules through Analyzing the RDA Test (RDA 테스트 분석을 통해 본 한국목록규칙의 테스트 방안에 관한 연구)

  • Lee, Mihwa;Hyun, Moonsoo
    • Journal of Korean Library and Information Science Society
    • /
    • v.46 no.1
    • /
    • pp.155-176
    • /
    • 2015
  • This study was for suggesting the test methods in the revision process of the cataloging rules to understand the problem of draft cataloging rules and to apply the new cataloging rules correctly in libraries instead of collecting the opinions by the traditional seminar and conference in the process of revising KCR, KCR2, KCR3, KCR4. For this study, the literature review and the case study were used as the research methods. The case study was based on the US RDA Test by US RDA Test Coordinating Committee. The evaluation areas of the test were cataloging rules, record creation and system development by reflecting the new cataloging rules, user, and cost. The data for the analysis was the creation of bibliographic records and authority records by librarians, and the question investigations that were the use of institutions, librarians, and users. This study would contribute to revise the cataloging rules in future by analyzing the errors of applying new rules to bibliographic record and by investigating the difficulties of applying rules in completing the bibliographic record. Also, the libraries could be easy to decide to implement the new rules from the creation time of bibliographic record by new rules and the learning curve of new rules.