• Title/Summary/Keyword: Problem areas

Search Result 2,148, Processing Time 0.032 seconds

Allocating Storage Spaces for Temporary Inventories Considering Handling, Transportation, and Storage Capacities (취급, 수송 및 저장능력을 고려한 임시 재고의 저장 공간 할당)

  • Won Seung-Hwan;Kim Kap-Hwan
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.31 no.3
    • /
    • pp.11-25
    • /
    • 2006
  • Space may be a scarce resource in manufacturing shops, warehouses, freight terminals, and container terminals. This Paper discusses how to locate temporary storage Inventories In limited storage areas. A typical inventory is delivered from the location of the preceding process to the storage area and stored In the storage area during the certain period of time. And it may be relocated from the storage position to another. Finally. it is delivered from the final storage area to the location of the next process. Because this logistic process for an inventory requires handling activities, transportation activities, and storage spaces, the limitation in capacities of handling equipment, transportation equipment, and storage space must be considered when allocating spaces to the inventory. This problem Is modeled as a multicommodity minimal cost flow problem. And a heuristic algorithm for the Problem is proposed. Numerical experiments are presented to validate the mathematical model and the heuristic algorithm.

Realtime Multiple Vehicle Routing Problem using Self-Organization Map (자기조작화 신경망을 이용한 복수차량의 실시간 경로계획)

  • 이종태;장재진
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.25 no.4
    • /
    • pp.97-109
    • /
    • 2000
  • This work proposes a neural network approach to solve vehicle routing problems which have diverse application areas such as vehicle routing and robot programming. In solving these problems, classical mathematical approaches have many difficulties. In particular, it is almost impossible to implement a real-time vehicle routing with multiple vehicles. Recently, many researchers proposed methods to overcome the limitation by adopting heuristic algorithms, genetic algorithms, neural network techniques and others. The most basic model for path planning is the Travelling Salesman Problem(TSP) for a minimum distance path. We extend this for a problem with dynamic upcoming of new positions with multiple vehicles. In this paper, we propose an algorithm based on SOM(Self-Organization Map) to obtain a sub-optimal solution for a real-time vehicle routing problem. We develope a model of a generalized multiple TSP and suggest and efficient solving procedure.

  • PDF

Differential Evolution Algorithm for Job Shop Scheduling Problem

  • Wisittipanich, Warisa;Kachitvichyanukul, Voratas
    • Industrial Engineering and Management Systems
    • /
    • v.10 no.3
    • /
    • pp.203-208
    • /
    • 2011
  • Job shop scheduling is well-known as one of the hardest combinatorial optimization problems and has been demonstrated to be NP-hard problem. In the past decades, several researchers have devoted their effort to develop evolutionary algorithms such as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) for job shop scheduling problem. Differential Evolution (DE) algorithm is a more recent evolutionary algorithm which has been widely applied and shown its strength in many application areas. However, the applications of DE on scheduling problems are still limited. This paper proposes a one-stage differential evolution algorithm (1ST-DE) for job shop scheduling problem. The proposed algorithm employs random key representation and permutation of m-job repetition to generate active schedules. The performance of proposed method is evaluated on a set of benchmark problems and compared with results from an existing PSO algorithm. The numerical results demonstrated that the proposed algorithm is able to provide good solutions especially for the large size problems with relatively fast computing time.

Improved Resource Allocation Scheme in LTE Femtocell Systems based on Fractional Frequency Reuse

  • Lee, Insun;Hwang, Jaeho;Jang, Sungjeen;Kim, Jaemoung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.9
    • /
    • pp.2153-2169
    • /
    • 2012
  • Femtocells provide high quality indoor communications with low transmit power. However, when femtocells are applied in cellular systems, a co-channel interference problem between macrocells and femtocells occurs because femtocells use the same spectrum as do the macrocells. To solve the co-channel interference problem, a previous study suggested a resource allocation scheme in LTE cellular systems using FFR. However, this conventional resource allocation scheme still has interference problems between macrocells and femtocells near the boundary of the sub-areas. In this paper, we define an optimization problem for resource allocation to femtocells and propose a femtocell resource allocation scheme to solve the optimization problem and the interference problems of the conventional scheme. The evaluation of the proposed scheme is conducted by System Level Simulation while varying the simulation environments. The simulation results show that the proposed scheme is superior to the conventional scheme and that it improves the overall performance of cellular systems.

A topology-based circuit partitioning for field programmable circuit board (Field programmable circuit board를 위한 위상 기반 회로 분할)

  • 최연경;임종석
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.2
    • /
    • pp.38-49
    • /
    • 1997
  • In this paper, w describe partitioning large circuits into multiple chips on the programmable FPCB for rapid prototyping. FPCBs consists of areas for FPGAs for logic and interconnect components, and the routing topology among them are predetermined. In the partition problem for FPCBs, the number of wires ofr routing among chips is fixed, which is an additonal constraints to the conventional partition problem. In order to deal with such aconstraint properly we first define a new partition problem, so called the topologybased partition problem, and then propose a heuristic method. The heuristic method is based on the simulated annealing and clustering technique. The multi-level tree clustering technique is used to obtain faster and better prtition results. In the experimental results for several test circuits, the restrictions for FPCB were all satisfied and the needed execution time was about twice the modified K-way partition method for large circuits.

  • PDF

Software Similarity Measurement based on Dependency Graph using Harmony Search

  • Yun, Ho Yeong;Joe, Yong Joon;Jung, Byung Ok;Shin, Dong myung;Bahng, Hyo Keun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.12
    • /
    • pp.1-10
    • /
    • 2016
  • In this paper, we attempt to prevent certain cases by tracing a history and making genogram about open source software and its modification using similarity of source code. There are many areas which use open source software actively and widely, and open source software contributes their development. However, there are many unconscious cases like ignoring license or intellectual properties infringe which can lead litigation. To prevent such situation, we analyze source code similarity using program dependence graph which resembles subgraph isomorphism problem, a typical NP-complete problem. To solve subgraph isomorphism problem, we utilized harmony search of metaheuristic algorithm and compared its result with a genetic algorithm. For the future works, we represent open source software as program dependence graph and analyze their similarity.

A Study on the Practical Use of Fairy-tales in Elementary Mathematics Education (초등수학에서 동화의 활용 방안 탐색)

  • 김상룡
    • Education of Primary School Mathematics
    • /
    • v.6 no.1
    • /
    • pp.29-40
    • /
    • 2002
  • Fairy-tales give students opportunities to build connections between a problem-solving situation and mathematics as well as to communicate solutions through writing, symbols, and diagrams. Therefore, the purpose of this paper is to introduce how to use fairy-tales in elementary mathematics classroom in order to develope student's mathematical concepts and process in terms of the following areas: ⑴ reconstructing literature ⑵ understanding concepts ⑶ problem posing activity. To be useful, mathematics should be taught in contexts that are meaningful and relevant to learners. Therefore using fairy-tales as a vehicle to teach mathematics gives students a chance to develope mathematics understanding in a natural, meaningful way, and to enhance problem posing and problem solving ability. Further, future study will continue to foster how fairy-tales literatures will enhance children's mathematics knowledge and influence on their mathematics performance.

  • PDF

Energy-efficient charging of sensors for UAV-aided wireless sensor network

  • Rahman, Shakila;Akter, Shathee;Yoon, Seokhoon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.4
    • /
    • pp.80-87
    • /
    • 2022
  • Lack of sufficient battery capacity is one of the most important challenges impeding the development of wireless sensor networks (WSNs). Recent innovations in the areas of wireless energy transfer and rechargeable batteries have made it possible to advance WSNs. Therefore, in this article, we propose an energy-efficient charging of sensors in a WSN scenario. First, we have formulated the problem as an integer linear programming (ILP) problem. Then a utility function-based greedy algorithm named UGreedy/UF1 is proposed for solving the problem. Finally, the performance of UGreedy/UF1 is analyzed along with other baseline algorithms: UGreedy/UF2, 2-opt TSP, and Greedy TSP. The simulation results show that UGreedy/UF1 performs better than others both in terms of the deadline missing ratio of sensors and the total energy consumption of UAVs.

Development of Instructional Models for Problem Solving in Quadratic Functions and Ellipses (이차함수와 타원의 문제해결 지도를 위한 멀티미디어 학습자료 개발)

  • 김인수;고상숙;박승재;김영진
    • Journal of Educational Research in Mathematics
    • /
    • v.8 no.1
    • /
    • pp.59-71
    • /
    • 1998
  • Recently, most classrooms in Korea are fully equipped with multimedia environments such as a powerful pentium pc, a 43″large sized TV, and so on through the third renovation of classroom environments. However, there is not much software teachers can use directly in their teaching. Even with existing software such as GSP, and Mathematica, it turns out that it doesn####t fit well in a large number of students in classrooms and with all written in English. The study is to analyze the characteristics of problem-solving process and to develop a computer program which integrates the instruction of problem solving into a regular math program in areas of quadratic functions and ellipses. Problem Solving in this study included two sessions: 1) Learning of basic facts, concepts, and principles; 2) problem solving with problem contexts. In the former, the program was constructed based on the definitions of concepts so that students can explore, conjecture, and discover such mathematical ideas as basic facts, concepts, and principles. In the latter, the Polya#s 4 phases of problem-solving process contributed to designing of the program. In understanding of a problem, the program enhanced students#### understanding with multiple, dynamic representations of the problem using visualization. The strategies used in making a plan were collecting data, using pictures, inductive, and deductive reasoning, and creative reasoning to develop abstract thinking. In carrying out the plan, students can solve the problem according to their strategies they planned in the previous phase. In looking back, the program is very useful to provide students an opportunity to reflect problem-solving process, generalize their solution and create a new in-depth problem. This program was well matched with the dynamic and oscillation Polya#s problem-solving process. Moreover, students can facilitate their motivation to solve a problem with dynamic, multiple representations of the problem and become a powerful problem solve with confidence within an interactive computer environment. As a follow-up study, it is recommended to research the effect of the program in classrooms.

  • PDF

Metal Area Segmentation in X-ray CT Images Using the RNA (Relevant Neighbor Ar ea) Principle

  • Kim, Youngshin;Kwon, Hyukjoon;Kim, Joongkyu;Yi, Juneho
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.12
    • /
    • pp.1442-1448
    • /
    • 2012
  • The problem of Metal Area Segmentation (MAS) in X-ray CT images is a very hard task because of metal artifacts. This research features a practical yet effective method for MAS in X-ray CT images that exploits both projection image and reconstructed image spaces. We employ the Relevant Neighbor Area (RNA) idea [1] originally developed for projection image inpainting in order to create a novel feature in the projection image space that distinctively represents metal and near-metal pixels with opposite signs. In the reconstructed result of the feature image, application of a simple thresholding technique provides accurate segmentation of metal areas due to nice separation of near-metal areas from metal areas in its histogram.