• Title/Summary/Keyword: Problem Decomposition

Search Result 590, Processing Time 0.024 seconds

PROPER ORTHOGONAL DECOMPOSITION OF DISCONTINUOUS SOLUTIONS WITH THE GEGENBAUER POST-PROCESSING

  • SHIN, BYEONG-CHUN;JUNG, JAE-HUN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.23 no.4
    • /
    • pp.301-327
    • /
    • 2019
  • The proper orthogonal decomposition (POD) method for time-dependent problems significantly reduces the computational time as it reduces the original problem to the lower dimensional space. Even a higher degree of reduction can be reached if the solution is smooth in space and time. However, if the solution is discontinuous and the discontinuity is parameterized e.g. with time, the POD approximations are not accurate in the reduced space due to the lack of ability to represent the discontinuous solution as a finite linear combination of smooth bases. In this paper, we propose to post-process the sample solutions and re-initialize the POD approximations to deal with discontinuous solutions and provide accurate approximations while the computational time is reduced. For the post-processing, we use the Gegenbauer reconstruction method. Then we regularize the Gegenbauer reconstruction for the construction of POD bases. With the constructed POD bases, we solve the given PDE in the reduced space. For the POD approximation, we re-initialize the POD solution so that the post-processed sample solution is used as the initial condition at each sampling time. As a proof-of-concept, we solve both one-dimensional linear and nonlinear hyperbolic problems. The numerical results show that the proposed method is efficient and accurate.

Identifying Top K Persuaders Using Singular Value Decomposition

  • Min, Yun-Hong;Chung, Ye-Rim
    • Journal of Distribution Science
    • /
    • v.14 no.9
    • /
    • pp.25-29
    • /
    • 2016
  • Purpose - Finding top K persuaders in consumer network is an important problem in marketing. Recently, a new method of computing persuasion scores, interpreted as fixed point or stable distribution for given persuasion probabilities, was proposed. Top K persuaders are chosen according to the computed scores. This research proposed a new definition of persuasion scores relaxing some conditions on the matrix of probabilities, and a method to identify top K persuaders based on the defined scores. Research design, data, and methodology - A new method of computing top K persuaders is computed by singular value decomposition (SVD) of the matrix which represents persuasion probabilities between entities. Results - By testing a randomly generated instance, it turns out that the proposed method is essentially different from the previous study sharing a similar idea. Conclusions - The proposed method is shown to be valid with respect to both theoretical analysis and empirical test. However, this method is limited to the category of persuasion scores relying on the matrix-form of persuasion probabilities. In addition, the strength of the method should be evaluated via additional experiments, e.g., using real instances, different benchmark methods, efficient numerical methods for SVD, and other decomposition methods such as NMF.

Dynamic Precipitation and Substructure Stablility of Cu Alloy during High Temperature Deformation

  • Han, Chang-Suk;Choi, Dong-Nyeok;Jin, Sung-Yooun
    • Korean Journal of Materials Research
    • /
    • v.29 no.6
    • /
    • pp.343-348
    • /
    • 2019
  • Structural and mechanical effects of the dynamical precipitation in two copper-base alloys have been investigated over a wide range of deformation temperatures. Basing upon the information gained during the experiment, also some general conclusion may be formulated. A one concerns the nature of dynamic precipitation(DP). Under this term it is commonly understood decomposition of a supersaturated solid solution during plastic straining. The process may, however, proceed in two different ways. It may be a homogeneous one from the point of view of distribution and morphological aspect of particles or it may lead to substantial difference in shape, size and particles distribution. The effect is controlled by the mode of deformation. Hence it seems to be reasonable to distinguish DP during homogeneous deformation from that which takes place in heterogeneously deformed alloy. In the first case the process can be analyzed solely in terms of particle-dislocation-particle interrelation. Much more complex problem we are facing in heterogeneously deforming alloy. Deformation bands and specific arrangement of dislocations in form of pile-ups at grain boundaries generate additional driving force and additional nucleation sites for precipitation. Along with heterogeneous precipitation, there is a homogeneous precipitation in areas between bands of coarse slip which also deform but at much smaller rate. This form of decomposition is responsible for a specially high hardening rate during high temperature straining and for thermally stable product of the decomposition of alloy.

Thermal Decomposition Activation Energy of Liquid Crystalline Epoxy using Cationic Initiator (양이온 개시제를 이용한 열경화성 액정 에폭시의 열분해 활성화에너지)

  • Jung, Ye Ji;Hyun, Ha Nuel;Cho, Seung Hyun
    • Composites Research
    • /
    • v.34 no.3
    • /
    • pp.180-185
    • /
    • 2021
  • Due to the formation of random three dimensional network structure, which cause a lot of scattering of phonons, the thermal conductivity is low when the liquid crystalline epoxy is cured with amine-based curing agent. This problem is solved by using a cationic initiator that can make mesogen groups to be stacked structure. In this experiment, the thermal stability is compared by investigating the activation energy of isothermal decomposition through TGA of an epoxy using an amine-based curing agent and a cationic initiator. As a result, the energy of the activation of the epoxy using a cationic initiator is high. Compared with the previous experiments, the thermal stability is similar to the thermal conductivity.

Fast-convergence trilinear decomposition algorithm for angle and range estimation in FDA-MIMO radar

  • Wang, Cheng;Zheng, Wang;Li, Jianfeng;Gong, Pan;Li, Zheng
    • ETRI Journal
    • /
    • v.43 no.1
    • /
    • pp.120-132
    • /
    • 2021
  • A frequency diverse array (FDA) multiple-input multiple-output (MIMO) radar employs a small frequency increment across transmit elements to produce an angle-range-dependent beampattern for target angle and range detection. The joint angle and range estimation problem is a trilinear model. The traditional trilinear alternating least square (TALS) algorithm involves high computational load due to excessive iterations. We propose a fast-convergence trilinear decomposition (FC-TD) algorithm to jointly estimate FDA-MIMO radar target angle and range. We first use a propagator method to obtain coarse angle and range estimates in the data domain. Next, the coarse estimates are used as initialized parameters instead of the traditional TALS algorithm random initialization to reduce iterations and accelerate convergence. Finally, fine angle and range estimates are derived and automatically paired. Compared to the traditional TALS algorithm, the proposed FC-TD algorithm has lower computational complexity with no estimation performance degradation. Moreover, Cramer-Rao bounds are presented and simulation results are provided to validate the proposed FC-TD algorithm effectiveness.

Extraction of optimal time-varying mean of non-stationary wind speeds based on empirical mode decomposition

  • Cai, Kang;Li, Xiao;Zhi, Lun-hai;Han, Xu-liang
    • Structural Engineering and Mechanics
    • /
    • v.77 no.3
    • /
    • pp.355-368
    • /
    • 2021
  • The time-varying mean (TVM) component of non-stationary wind speeds is commonly extracted utilizing empirical mode decomposition (EMD) in practice, whereas the accuracy of the extracted TVM is difficult to be quantified. To deal with this problem, this paper proposes an approach to identify and extract the optimal TVM from several TVM results obtained by the EMD. It is suggested that the optimal TVM of a 10-min time history of wind speeds should meet both the following conditions: (1) the probability density function (PDF) of fluctuating wind component agrees well with the modified Gaussian function (MGF). At this stage, a coefficient p is newly defined as an evaluation index to quantify the correlation between PDF and MGF. The smaller the p is, the better the derived TVM is; (2) the number of local maxima of obtained optimal TVM within a 10-min time interval is less than 6. The proposed approach is validated by a numerical example, and it is also adopted to extract the optimal TVM from the field measurement records of wind speeds collected during a sandstorm event.

Multi-variate Empirical Mode Decomposition (MEMD) for ambient modal identification of RC road bridge

  • Mahato, Swarup;Hazra, Budhaditya;Chakraborty, Arunasis
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.4
    • /
    • pp.283-294
    • /
    • 2020
  • In this paper, an adaptive MEMD based modal identification technique for linear time-invariant systems is proposed employing multiple vibration measurements. Traditional empirical mode decomposition (EMD) suffers from mode-mixing during sifting operations to identify intrinsic mode functions (IMF). MEMD performs better in this context as it considers multi-channel data and projects them into a n-dimensional hypercube to evaluate the IMFs. Using this technique, modal parameters of the structural system are identified. It is observed that MEMD has superior performance compared to its traditional counterpart. However, it still suffers from mild mode-mixing in higher modes where the energy contents are low. To avoid this problem, an adaptive filtering scheme is proposed to decompose the interfering modes. The Proposed modified scheme is then applied to vibrations of a reinforced concrete road bridge. Results presented in this study show that the proposed MEMD based approach coupled with the filtering technique can effectively identify the parameters of the dominant modes present in the structural response with a significant level of accuracy.

Educational Method of Computational Thinking Processes using Physical Teaching Devices (피지컬 교구를 활용한 컴퓨팅적 사고과정 교육방법)

  • Hur, Kyeong
    • Journal of Practical Engineering Education
    • /
    • v.10 no.1
    • /
    • pp.35-39
    • /
    • 2018
  • More and more universities are enforcing SW education for non-major undergraduates. However, they are experiencing difficulties in educating non-major students to understand computational thinking processes. In this paper, we did not use the mathematical operation problem to solve this problem. And we proposed a basic problem-solving process teaching method based on computational thinking using simple physical devices. In the proposed educational method, we teach a LED circuit using an Arduino board as an example. And it explains the problem-solving process with computational thinking. Through this, students learn core computational thinking processes such as abstraction, problem decomposition, pattern recognition and algorithms. By applying the proposed methodology, students can gain the concept and necessity of computational thinking processes without difficulty in understanding and analyzing the given problem.

A simplified method for determining the acceleration amplitudes of long-span floor system under walking/running loads

  • Cao, Liang;Chen, Y. Frank
    • Structural Engineering and Mechanics
    • /
    • v.75 no.3
    • /
    • pp.377-387
    • /
    • 2020
  • Modern long-span floor system typically possesses low damping and low natural frequency, presenting a potential vibration sensitivity problem induced by human activities. Field test and numerical analysis methods are available to study this kind of problems, but would be inconvenient for design engineers. This paper proposes a simplified method to determine the acceleration amplitudes of long-span floor system subjected to walking or running load, which can be carried out manually. To theoretically analyze the acceleration response, the floor system is simplified as an anisotropic rectangular plate and the mode decomposition method is used. To facilitate the calculation of acceleration amplitude aP, a coefficient αwmn or αRmn is introduced, with the former depending on the geometry and support condition of floor system and the latter on the contact duration tR and natural frequency. The proposed simplified method is easy for practical use and gives safe structural designs.

Rapid Die Surface Modification for Sheet Metal Forming (박판성형을 위한 신속한 금형곡면의 수정)

  • Yoo, D.J.
    • Transactions of Materials Processing
    • /
    • v.16 no.7
    • /
    • pp.538-548
    • /
    • 2007
  • In this paper, a novel approach which enables rapid die surface modification for sheet metal forming process is proposed. In this method an implicit surface which interpolates a given set of control points and displacement constraints is generated to compute the displacements at arbitrary points located on die surface. The proposed method does not depend on the underlying surface representation type and is affected neither by its complexity nor by its quality. In addition, the domain decomposition method is introduced in order to treat large surface model. The global domain of interest is divided into smaller domains where the problem can be solved locally. And then the local solutions are combined together to obtain a global solution. In order to verify the validity and effectiveness of the proposed method, various surface modifications are carried out fur three kinds of die surface model including polygonal surface composed of triangular and rectangular meshes, polynomial surface and NURBS surface.