• Title/Summary/Keyword: Probe data

Search Result 781, Processing Time 0.024 seconds

A Study on Calculation of Sectional Travel Speeds of the Interrupted Traffic Flow with the Consideration of the Characteristics of Probe Data (프로브 자료의 특성을 고려한 단속류의 구간 통행속도 산출에 관한 연구)

  • Jeong, Yeon Tak;Jung, Hun Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.6
    • /
    • pp.1851-1861
    • /
    • 2014
  • This study aims to calculate reliable sectional travel speeds with the consideration of the characteristics of the probe data collected in the interrupted traffic flow. First, in order to analysis the characteristics of the probe data, we looked into the distribution of the sectional travel times of each probe vehicle and compared the difference in the sectional travel speeds of each probe vehicle collected by DSRC. As a result, it is shown that outliers should be removed for the distribution of the sectional travel times. However, The comparison results show that the sectional travel speeds from the DSRC probe vehicles are not significantly different. Finally, based on the distribution characteristics of the sectional travel speeds of each probe vehicle and the representative values counted during a collection period, we drew the optimal outlier removal procedure and evaluated the estimation errors. The evaluation results showed that the DSRC sectional travel speeds were found to be similar to the observed values from actually running vehicles. On the contrary, in the case of the sectional travel speeds of intra-city bus, it was analyzed that they were less accurate than the DSRC sectional travel speeds. In the future, it will be necessary to improve BIS process and make use of the travel information on intra-city buses collected in real time to find various ways of applying it as traffic information.

Application of the New Calibration Algorithm of a Straight-Type Five-Hole Pressure Probe (직선형 5공 압력프로브의 새로운 교정 알고리듬 적용)

  • Kim, Jang-Kweon;Oh, Seok-Hyung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.11
    • /
    • pp.863-869
    • /
    • 2008
  • This paper investigated the new calibration algorithm of a straight-type five-hole pressure probe for measuring three-dimensional flow velocity components. This new calibration algorithm was used for velocity data reduction from the calibration map and based on the combination of a look-up, a binary search algorithm and a geometry transformation including the translation and reflection of nodes in a calibration map. The calibration map was expanded up to the application angle, ${\pm}55^{\circ}$ of a probe. This velocity data reduction method showed a perfect performance without any kind of interpolating errors in calculating yaw and pitch angles from the calibration map. Moreover, when it was applied to an actual flow field including a swirling flow, a good result came out on the whole.

Measurement System Development for Three-Dimensional Flow Velocity Components Using Straight-Type Five-Hole Pressure Probe (직선형 5공 압력프로브를 이용한 3차원 유동속도 계측시스템 개발)

  • Kim, J.K.;Jeong, K.J.;Oh, S.H.
    • Journal of Power System Engineering
    • /
    • v.10 no.4
    • /
    • pp.56-64
    • /
    • 2006
  • This paper shows the development process of a straight-type five-hole pressure probe for measuring three-dimensional flow velocity components. The data reduction method using a bi-cubic curve-fitting program in a new calibration map was introduced in this study. This new calibration map can be applied up to the application angle, ${\pm}55^{\circ}$ of a probe. As a result, for the application angle of ${\pm}45^{\circ}$, an error for yaw and pitch angles appeared from $-1.76^{\circ}\;to\;1.83^{\circ}$ and from $-1.91^{\circ}\;to\;1.75^{\circ}$, respectively. Moreover, an error for a vector magnitude and a static pressure compared with a dynamic one showed from -7.83% to 4.87% and from -0.73 to 0.77, respectively. Even though this data reduction method showed unsatisfactory errors in a vector magnitude, it resulted in an easy and simple application method. Especially, when it was applied to an actual flow field including a swirling flow, a good result came out on the whole. However, in order to obtain a better result, it is thought that a more sophisticated interpolation method needs to be introduced.

  • PDF

Calibration of a Five-Hole Pressure Probe using a Single Sector Error Interpolation Model (단일영역 오차보간 모델을 이용한 5-Hole Pressure Probe의 교정)

  • O, Se-Yun;An, Seung-Gi;Jo, Cheol-Yeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.5
    • /
    • pp.30-38
    • /
    • 2006
  • A new calibration method for five-hole pressure probe is presented. This method provides accuracies better than those based on the traditional regression method. The calibration algorithm uses a single sector interpolation response surface calculated by comparing the regression curve fits with the actual calibration data. A five-hole pressure probe with hemispherical tip was fabricated and calibrated at Reynolds number of $4.11{\times}10^6$/m and flow angle of ${\pm}48$ degrees. Two data prediction models, the least-square regression and a single sector error interpolation, were evaluated. The comparison of these two calibration methods to a five-hole probe is described and discussed. An evaluation of the calibration accuracy is also given.

An Estimation Methodology of Empirical Flow-density Diagram Using Vision Sensor-based Probe Vehicles' Time Headway Data (개별 차량의 비전 센서 기반 차두 시간 데이터를 활용한 경험적 교통류 모형 추정 방법론)

  • Kim, Dong Min;Shim, Jisup
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.2
    • /
    • pp.17-32
    • /
    • 2022
  • This study explored an approach to estimate a flow-density diagram(FD) on a link in highway traffic environment by utilizing probe vehicles' time headway records. To study empirical flow-density diagram(EFD), the probe vehicles with vision sensors were recruited for collecting driving records for nine months and the vision sensor data pre-processing and GIS-based map matching were implemented. Then, we examined the new EFDs to evaluate validity with reference diagrams which is derived from loop detection traffic data. The probability distributions of time headway and distance headway as well as standard deviation of flow and density were utilized in examination. As a result, it turned out that the main factors for estimation errors are the limited number of probe vehicles and bias of flow status. We finally suggest a method to improve the accuracy of EFD model.

Aerodynamic Damping Analysis of a Vane-type Multi-Function Air Data Probe

  • Lee, Yung-Gyo;Park, Young-Min
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.1
    • /
    • pp.99-104
    • /
    • 2013
  • Configuration design, analysis, and wind tunnel test of a vane-type multi-function air data probe (MFP) was described. First, numerical analysis was conducted for the initial configuration of the MFP in order to investigate aerodynamic characteristics. Then, the design was modified to improve static and dynamic stability for better response characteristics. The modified configuration design was verified through wind tunnel tests. The test results are also used to verify the accuracy of the analytical method. The analytically estimated aerodynamic damping provided by the Navier-Stokes equation solver correlated well with the wind tunnel test results. According to the calculation, the damping coefficient estimated from ramp motion analysis yielded a better correlation with the wind tunnel test than pitch oscillation analysis.

Predicting Package Chip Quality Through Fail Bit Count Data from the Probe Test (프로브 검사 결점 수 데이터를 이용한 패키지 칩 품질 예측 방법론)

  • Park, Jin Soo;Kim, Seoung Bum
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.41 no.4
    • /
    • pp.408-413
    • /
    • 2015
  • The quality prediction of the semiconductor industry has been widely recognized as important and critical for quality improvement and productivity enhancement. The main objective of this paper is to predict the final quality of semiconductor chips based on fail bit count information obtained from probe tests. Our proposed method consists of solving the data imbalance problem, non-parametric variable selection, and adjusting the parameters of the model. We demonstrate the usefulness and applicability of the proposed procedure using a real data from a semiconductor manufacturing.

A Study on the Five - hole Probe Calibration with Non-nulling Method (비영위법에 의한 5공 프로브의 교정에 관한 연구)

  • Jeong, Yang Beom;Sin, Yeong Ho;Park, Ho Dong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.2
    • /
    • pp.116-116
    • /
    • 1996
  • This paper is concerned with a method for calibrating five-hole probes of both angle-tube and prismatic geometries to measure local total and static pressures and the magnitude and direction of the mean velocity vector. Descriptions of the calibration technique, the typical calibration data, and an accompanying discussion of the interpolation procedure are included. The flow properties are determined explicitly from measured probe pressures using calibration data. Flow angles are obtained within the deviation angle of 1.0 degree and dynamic pressures within 0.03 with 95% certainty. The variations in the calibration data due to Reynolds number are also discussed. For the range of Reynolds number employed, no effect was detected on the pitch, yaw and total pressure coefficients. However, the static pressure coefficient showed change to cause minor variations in the magnitude of the calculated velocity vector. To account for these variations, average correction factors need to be incorporated into the static pressure coefficient.

A Study on the Five-hole Probe Calibration with Non-nulling Method (비영위법에 의한 5공 프로브의 교정에 관한 연구)

  • 정양범;신영호;박호동
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.2
    • /
    • pp.48-56
    • /
    • 1996
  • This paper is concerned with a method for calibrating five-hole probes of both angle-tube and prismatic geometries to measure local total and static pressures and the magnitude and direction of the mean velocity vector. Descriptions of the calibration technique, the typical calibration data, and an accompanying discussion of the interpolation procedure are included. The flow properties are determined explicitly from measured probe pressures using calibration data. Flow angles are obtained within the deviation angle of 1.0 degree and dynamic pressures within 0.03 with 95% certainty. The variations in the calibration data due to Reynolds number are also discussed. For the range of Reynolds number employed, no effect was detected on the pitch, yaw abd total pressure coefficients. However, the static pressure coefficient showed change to cause minor variations in the magnitude of the calculated velocity vector. To account for these variations, average correction factors need to be incorporated into the static pressure coefficient.

  • PDF

Determination of Availability of Domestic Developed Bobbin Probe for Steam Generator Tube Inspection (증기발생기 전열관 와전류검사용 국내 개발 보빈탐촉자 적용성 분석)

  • Kim, In-Chul;Joo, Kyung-Mun;Moon, Yong-Sig
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.7 no.4
    • /
    • pp.19-25
    • /
    • 2011
  • Steam Generator(SG) tube is an important component of Nuclear Power Plant(NPP), which is the pressure boundary between the primary and secondary systems. The integrity of SG tube has been confirmed by the eddy current test every outage. The eddy current technique adopting bobbin probe is currently the primary technique for the steam generator tubing integrity assesment. The bobbin probe is one of the essential components which consist of the whole ECT examination system and provides us a decisive data for the evaluation of tube integrity. Until now, all of the ECT bobbin probes in Korea which is necessary to carry out inspection are imported from overseas. However, KHNP has recently developed the bobbin probe design technology and transferred it to domestic manufacturers to fabricate the probes. This study has been conducted to establish technical requirements applicable to the steam generator tube inspection using the bobbin probes fabricated by the domestic manufactures. The results have been compared with the results obtained by using foreign probe to identify the availability to the steam generator tube inspection. As a result, it is confirmed that the domestic bobbin probe is generally applicable to SG tube inspection in the NPPs.