• Title/Summary/Keyword: Probe angle

Search Result 229, Processing Time 0.026 seconds

Observation of the Vortex Interaction over an Yawed Delta Wing with Leading Edge Extension by Flow Visualization and 5-hole Probe Measurements (가시화와 5공 프로브 측정을 통한 연장된 앞전을 갖는 편요된 델타형 날개에서의 와류 상호작용 관찰)

  • Sohn, Myong-Hwan;Lee, Ki-Young
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.388-393
    • /
    • 2001
  • An experimental study is conducted to investigate the interaction of vortices over a delta wing with leading edge extension(LEX) through the off-surface flow visualization and the 5-hole probe measurements of the wing wake region. Especially, the application of a new visualization technique is employed by ultrasonic humidifier water droplet and laser beam sheet. The results, both the off-surface visualization and the 5-hole probe, show that LEX tends to stabilize the vortices of the delta wing up to the high angle of attack even though the model is yawed. With increasing yaw, the windward leading edge vortex moves inward, and closer to the wing surface, while the leeward vortex moves outwards and away from the wing surface. The vortex interaction is promoted in the windward side, and is delayed in the leeward side.

  • PDF

A Study on the Size Evaluation of Disc and Band Type Flaw by Ultrasonic Tandem Testing (초음파(超音波)TANDEM사각법(斜角法)에 의한 원형(圓形) 및 띠형결함(形缺陷)의 크기 평가(評價)에 관한 연구(硏究))

  • Han, E.K.;Eom, H.S.;Kim, J.J.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.5 no.2
    • /
    • pp.12-21
    • /
    • 1986
  • Generally, butt welds with plate thickness $30{\sim}40mm$ are welded with groove angle $40^{\circ},\;60^{\circ},\;70^{\circ}$, etc. In the detection of internal weld defects, oblique testing with single probe has been mainly used. But, recently, in acccordance with enlargement of welded structure, thick plate with 100-200mm are frequently required. Thus I-groove welding method was lately developed and often used. In this case, most frequently generated defects are the lack of weld penetration and incomplete fusion between base metal and welding material. If we would detect by oblique testing with single probe, detecting flaw is occassionally impossible or very underestimated. In this study, the limit for applying tandem method was studied in dise and band type flaws. The estimation of flaw size could be within 10% error compared to real flaws.

  • PDF

AERODYNAMIC DESIGN OF A VANE TYPE MULTI-FUNCTION AIR DATA SENSOR (베인형 다기능 대기 자료 센서의 공력 설계)

  • Park, Y.M.;Choi, I.H.;Lee, Y.G.;Kwon, K.J.;Kim, S.C;Hwang, I.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.43-49
    • /
    • 2010
  • Aerodynamic design of the vane type multi-function probe was tried by using CFD and wind tunnel test for the MALE UAV and small business jets. The present multi-function probe can measure total pressure, static pressure and angle of attack by using rotating vane. Therefore major performances are determined by aerodynamic characteristics of vane. In oder to design the sensor compatible to the requirement, aerodynamic characteristics of sensors was investigated by using CFD and dynamic response analysis was also performed for trasient performance. The final aerodynamic performance was measured by the wind tunnel test at Aeorsonic and the results successfully used for the design of vane type multi-function air data sensor.

  • PDF

AERODYNAMIC DESIGN OF A MULTI-FUNCTION AIR DATA SENSOR BY USING CFD AND WIND TUNNEL TEST (전산해석 및 풍동시험을 이용한 다기능 대기 자료 센서의 공력 설계)

  • Park, Y.M.;Choi, I.H.;Lee, Y.G.;Kwon, K.J.;Kim, S.C.;Hwang, I.H.
    • Journal of computational fluids engineering
    • /
    • v.15 no.3
    • /
    • pp.32-38
    • /
    • 2010
  • Aerodynamic design of the vane type multi-function probe was tried by using CFD and wind tunnel test for the MALE UAV and small business jets. The present multi-function probe can measure total pressure, static pressure and angle of attack by using rotating vane. Therefore, major performances are determined by aerodynamic characteristics of vane. In order to design the sensor compatible to the requirement, aerodynamic characteristics of sensors were investigated by using CFD and dynamic response analysis was also performed for transient performance. The final aerodynamic performance was measured by the wind tunnel test at Aerosonic and the results were compared with the present design. The results showed that the aerodynamic design using the CFD can be successfully used for the design of vane type multi-function air data sensor.

Consideration on the Experimental Measurement of Flaw Height of Welds by Ultrasonic Testing (초음파(超音波) 탐상법(探傷法)에 의(依)한 용접부(熔接部)의 결함(缺陷)높이 측정(測定)에 관한 연구(硏究))

  • Ahn, Il-Young;Yin, Tong-Kyu;Han, Eung-Kyo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.2 no.1
    • /
    • pp.10-16
    • /
    • 1982
  • This study was carried out to measure the flaw height of welds in consideration of the effective probe angle in ultrasonic oblique detection. Specimens with inserted artificial flaws were made and flaw heights were estimated from detecting these specimens. Two different methods were applied to estimate flaw heights. From the result of the experiment, flaw height could be measured within the accuracy of 15% percent error and the difference between the probe distance method and beam path method is about 5% relatively small. It is considered that the results obtained this experimental study could be helpful informal ions for measuring flaw height.

  • PDF

A Study on the Velocity Measurement Uncertainty for Fire-Driven Flows (화재유동장의 속도측정 오차에 관한 연구)

  • Kim, Sung-Chan;Kim, Jung-Yong;Jung, Sung-Ryong
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2011.11a
    • /
    • pp.155-158
    • /
    • 2011
  • 유속을 측정하기 위한 다양한 기법들 가운데 양방향 저속 차압 프로브(bi-directional low velocity pressure probe)는 고온의 연소생성물이 존재하는 조건에서 화재유동장의 속도 측정에 가장 적합한 방법으로 인식되어 왔다. 그러나 양방향 유속계의 프로브 상수(probe constant)는 레이놀즈 수와 유동과 프로브의 받음각(attack angle)에 크게 영향을 받게 된다. 본 연구에서는 화재유동장 측정 기법들을 비교 평가하고 양방향 유속계의 받음각에 따른 프로브 상수의 변화를 실험적으로 평가하여 양방향 유속계의 측정 오차를 정량함으로서 화재 유동장 측정의 신뢰성 향상을 위한 기초자료를 제공하고자 한다.

  • PDF

Design of Pitot-Tube Configuration Using CFD Analysis and Optimization Techniques (CFD 해석 및 최적화 기법을 이용한 피토관 형상설계)

  • Kim, Do-Jun;Cheon, Young-Seong;Myong, Rho-Shin;Park, Chan-Woo;Cho, Tae-Hwan;Park, Young-Min;Choi, In-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.5
    • /
    • pp.392-399
    • /
    • 2008
  • Accurate measurement of speed and altitude of flying vehicles in air data system remains a critical technical issue. A highly reliable Pitot-static probe is required to obtain air data such as total pressure and static pressure. In this study, an analysis of the characteristics of flowfield around the Pitot-static probe was performed by using a Navier-Stokes CFD code. In addition, for the purpose of finding an optimal configuration, a technique based on the response surface method is applied to the problem with design parameters including shape of the nose section and cone angle. It is shown that the optimal configuration fulfills the MIL specification in wider range of high angles of attack.

An Experimental Study on the Flow at the Impeller Exit of a Centrifugal Pump (원심펌프의 회전차 출구 유동에 관한 실험적 연구)

  • Kang, Shin-Hyoung;Hong, Soon-Sam
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.234-241
    • /
    • 1999
  • The flow at the impeller exit is important to validate engineering design and numerical analysis of pumps. However, it is not easy to measure the flow at the impeller exit and evaluate the impeller performance since there is usually strong interaction between the impeller and the volute casing. We installed axisymmetric collector instead of the volute casing, so there is no interaction between the impeller and casing. A 3-hole Cobra probe is used to investigate the flow at impeller exit and vaneless diffuser region for design and on design flow rate. For a single suction centrifugal pump of low specific speed, the flow field such as velocity, flow angle, and total pressure are measured by traversing the probe across the vaneless diffuser. These data can be used for performance prediction, desist and numerical analysis of pumps.

  • PDF

Comparison of Heat Transfer in Both the Riser and Downcomer of a Circulating Fluidized Bed

  • Hassanein, Soubhi A.;Dahab, O.M.
    • 한국연소학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.24-32
    • /
    • 2004
  • The characteristics of heat transfer from horizontal cylinder immersed in both a riser and downcomer of a circulating fluidized beds were investigated experimentally under different values of solids mass flux, superficial air velocity, particle size diameter, and different bed materials. The test results indicated that local heat transfer coefficients in both riser and downcomer are strongly influenced by angular position, and mass flux, as well as by particle size and bed materials. The local heat transfer coefficients around a circumference of the cylinder inside a riser and downcomer of a CFB exhibited a general tendency to increase with decreasing particle size and increasing solids mass flux and vary with different bed materials. Also the averaged heat transfer coefficient calculated from local heat transfer coefficient exhibited the same trend as a local i.e increase with decrease particle size and increasing solids mass flux and vary with varying bed materials. The general trend for a riser local heat transfer coefficient is decrease with increase angle until ${\Phi}$ = 0.5-0.6 (Where at angle =180$^{\circ}$ ${\Phi}$ =1). Also the general trend for a local heat transfer coefficient in downcomer is to increase with increase the angle until ${\Phi}$= ${\theta}/{\Pi}$ = 0.3-0.5 (Where at angle =180$^{\circ}$ ${\Phi}$ =1). Comparison the results of the heat transfer in the riser and downcomer of a circulating fluidized beds shows that they have approximately the same trend but the values of heat transfer coefficients in riser is higher than in downcomer.

  • PDF

An experimental study on the secondary flow and losses in turbine cascades (익렬 통로 내의 2차유동 및 손실에 관한 실험 연구)

  • Jeong, Yang-Beom;Sin, Yeong-Ho;Kim, Sang-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.1
    • /
    • pp.12-24
    • /
    • 1998
  • The paper presents the mechanism of secondary flows and the associated total pressure losses occurring in turbine cascades with turning angle of about 127 and 77 degree. Velocity and pressure measurements are taken in seven traverse planes through the cascade passage using a prism type five hole probe. Oil-film flow visualization is also conducted on blade and endwall surfaces. The characteristics of the limiting streamlines show that the three dimensional separation is an important flow feature of endwall and blade surfaces. The larger turning results in much stronger contribution of the secondary flows to the loss developing mechanism. A large part of the endwall loss region at downstream pressure side is found to be very thin when compared to that of the cascade inlet and suction side endwall. Evolution of overall loss starts quite early within the cascade and the rate of the loss growth is much larger in the blade of large turning angle than in the blade of small turning angle.