• Title/Summary/Keyword: Probe angle

Search Result 229, Processing Time 0.025 seconds

Quality Management of ITO Thin Film for OLED Based on Relationship of Fabrication and Characteristics (OLED용 ITO박막의 공정조건과 품질특성 추론에 근거한 품질관리)

  • Seo, Jeong-Min;Park, Keun-Young;Lee, Sang-Ryong;Lee, Choon-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.4
    • /
    • pp.336-341
    • /
    • 2008
  • Recently, research on a flat panel display(FPD) has focused on organic light-emitting display(OLED) which has wide angle of view, high contrast ratio and low power consumption. ITO(Indium-Tin-Oxide) films are the most widely used material as a transparent electrode of OLED and also in many other display devices like LCD or PDP. The performance and efficiency of OLED is related to the surface condition of ITO coated glass substrate. The typical surface defect of glass substrate is measured for electric characteristics and physical condition for transmittance and roughness. Since ITO coated glass substrate can be destroyed for inspection about surface roughness, sheet resistance, film thickness and transmittance, precise fabrication condition should be made based on the estimated relationship. In this paper, ITO films were prepared on the commercial glass substrate by the Ion-Plating method changing the partial pressure of gas(Ar, 02) and the chamber temperature between $200^{\circ}C$ and $300^{\circ}C$. The characteristics of films were examined by the 4-point probe, supersonic thickness measurement, transmittance measurement and AFM. We estimated the relationship between processing parameters(Ar gas, O2 gas, Temperature) and properties of ITO films (Sheet Resistance, Film Thickness, Transmittance, Surface Roughness).

The Experimental Investigation of the Secondary Flow and Losses Within the Plane Turbine Cascade Passage (선형터빈 케스케이드 통로내의 2차 유동과 손실에 관한 연구)

  • 이기백;양장식;나종문
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.784-795
    • /
    • 1995
  • This paper represents the results of the experiments of the three-dimensional flow and the aerodynamic loss caused by the three-dimensional flow within the plane bucket blades. To research the secondary flow and the aerodynamic loss, the large-scale plane bucket blade of lst-stage in the low pressure steam turbine is made of FRP. The detailed investigation of the secondary flow and the aerodynamic loss using 5-hole pressure probe within turbine cascade has been carried out in the low speed wind tunnel. The limiting streamlines of the suction and endwall surface have been visualized by the oil film method. The flow visualization of the secondary flow has been performed by the laser light sheet technique and image processing system. By using the method mentioned above, it is possible to observe the evolution of the pitchwise mass-averaged flow deviation angle and total pressure loss coefficient, the secondary flow, and the aerodynamic loss through the cascade.

A Simulation Tool for Ultrasonic Inspection

  • Krishnamurthy, Adarsh;Mohan, K.V.;Karthikeyan, Soumya;Krishnamurthy, C.V.;Balasubramaniam, Krishnan
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.3
    • /
    • pp.153-161
    • /
    • 2006
  • A simulation program SIMULTSONIC is under development at CNDE to help determine and/or help optimize ultrasonic probe locations for inspection of complex components. SIMULTSONIC provides a ray-trace based assessment for immersion and contact modes of inspection. The code written in Visual C++ operating in Microsoft Windows environment provides an interactive user interface. In this paper, a description of the various features of SIMULTSONIC is given followed by examples illustrating the capability of SIMULTSONIC to deal with inspection of canonical objects such as pipes. In particular, the use of SIMULTSONIC in the inspection of very thin-walled pipes (with 450 urn wall thickness) is described. Ray trace based assessment was done using SIMULTSONIC to determine the standoff distance and the angle of oblique incidence for an immersion mode focused transducer. A 3-cycle Hanning window pulse was chosen for simulations. Experiments were carried out to validate the simulations. The A-scans and the associated B-Scan images obtained through simulations show good correlation with experimental results, both with the arrival time of the signal as well as with the signal amplitudes.

Thermal effect at Nd:YAG using a laser-diode side-pumping (반도체 레이저 측면 여기 Nd:YAG 매질에서의 열영향)

  • 양동옥;김병태
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.1
    • /
    • pp.44-50
    • /
    • 2003
  • This paper describes the thermal effect at Nd:YAG using a laser-diode side-pumping. To detect the depolarization loss and the retardation caused by the thermal effect, a λ/4 plate is inserted between the polarizer and the Nd:YAG laser material. Using a CCD has allowed detection of the variation of the beam pattern that could analyze the change of the refractive index of the Nd:YAG laser material by the thermal effect. Through the change of the probe beam power, we know that 21% of the pumping power was converted into heat in the material. The depolarization loss was 24.7% under a temperature of $25^{\circ}C$ of the laser material and a pumping power of 15 W. The inhomogeneous distribution showed that the retardation angle was 7$^{\circ}$ in the center of the material and 19$^{\circ}$ on the edge of it. It is confirmed that the thermal effect is analyzed at the each point of the laser material and it suggests an effective method to reduce the thermal effect on the LD side-pumped laser material.

Micro/nano Tribological and Water Wetting Characteristics of Ion Beam Treated PTFE Surfaces

  • Yoon, Eui-Sung;Oh, Hyun-Jin;Yang, Seung-Ho;Kong, Hosung
    • KSTLE International Journal
    • /
    • v.3 no.1
    • /
    • pp.12-16
    • /
    • 2002
  • Micro/nano tribological and water wetting characteristics of ion beam treated PTFE (polytetrafluoroethylene) surfaces were experimentally studied. The ion beam treatment was performed with a hollow cathode ion gun at different argon ion dose conditions in a vacuum chamber to modify the topography of PTFE surface. Micro/nano tribological characteristics, water wetting angles and roughness were measured with a micro tribe tester, SPM (scanning probe microscope), contact anglemeter and profilometer, respectively. Results showed that surface roughness increased with the argon ion dose. Water wetting angle of the ion beam treated samples increased with the ion dose, so the surface shows an ultra-hydrophobic nature. Micro-adhesion and micro-friction depend on the wetting characteristics of the PTFE samples. However, nano-tribological characteristics showed different results. The scale effect of surface topography on tribological characteristics was discussed. Also, the water wetting characteristics of modified PTFE samples were discussed in terms of the surface topographic characteristics.

Study on the variation of surface characteristics of organic films as a function of bias power by O2 plasma (O2 플라즈마 바이어스 파워에 따른 유기 박막의 표면 특성 변화 연구)

  • Ham, Yong-Hyun;Baek, Kyu-Ha;Do, Lee-Mi;Sin, Hong-Sik;Park, Suk-Hyung;Kwon, Kwang-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.04b
    • /
    • pp.57-57
    • /
    • 2009
  • In this work, we carried out the variation of surface characteristics of organic polymer films by O2 plasma. The plasma diagnostics were performed by DLP(Double Langmuir Probe) and OES(Optical Emission Spectroscopy) measurements. Moreover, variation of surface characteristics were measured by AFM(Atomic Force Microscope), XPS(X-ray Photoelectron Spectroscopy), and contact angle goniometer. It was found that the etch rate of organic films was controlled by O radicals flux and dc bias voltage. And O radical density and dc bias voltage increased with increasing bias power. So, it was changed surface energy as a function of surface roughness and O/C ratio in organic films.

  • PDF

A Study on the Characteristics of Ammonia Doped Plasma Polymer Thin Film with a Controlled Plasma Power

  • Seo, Hyeon-Jin;Hwang, Gi-Hwan;Ju, Dong-U;Yu, Jeong-Hun;Lee, Jin-Su;Jeon, So-Hyeon;Nam, Sang-Hun;Yun, Sang-Ho;Bu, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.242.2-242.2
    • /
    • 2014
  • Plasma-polymer thin films (PPTF) have been deposited on a Si(100) wafer and glass under several conditions such as different RF power by using plasma-enhanced chemical vapor deposition (PECVD) system. Ethylcyclohexane, ammonia gas, hydrogen and argon were utilized as organic precursor, doping gas, bubbler gas and carrier gases, respectively. PPTFs were grown up with RF (ratio frequency using 13.56 MHz) powers in the range of 20~60 watt. PPTFs were characterized by FT-IR (Fourier Transform Infrared), FE-SEM (Scanning Electron Microscope), AFM (Atomic Force Microscope), Contact angle and Probe station. The result of FT-IR measurement showed that the PPTFs have high cross-link density nitrogen doping ratio was also changed with a RF power increasing. AFM and FE-SEM also showed that the PPTFs have smooth surface and thickness. Impedance analyzer was utilized for the measurements of C-V curves having different dielectric constant as RF power.

  • PDF

Development of Highly Conductive Poly(3,4-ethylenedioxythiophene) Thin Film using High Quality 3-Aminopropyltriethoxysilane Self-Assembled Monolayer (고품질 3-Aminopropyltriethoxysilane 자기조립단분자막을 이용한 고전도도 Poly(3,4-ethylenedioxythiophene) 전극박막의 개발)

  • Choi, Sangil;Kim, Wondae;Kim, Sungsoo
    • Journal of Integrative Natural Science
    • /
    • v.4 no.4
    • /
    • pp.294-297
    • /
    • 2011
  • Quality of PEDOT electrode thin film vapor phase-polymerized on 3-aminopropyltriethoxysilane (APS) self-assembled monolayer (SAM) is very crucial for making an ohmic contact between electrode and semiconductor layer of an organic transistor. In order to improve the quality of PEDOT film, the quality of APS-SAM laying underneath the film must be in the best condition. In this study, in order to improve the quality of APS-SAM, the monolayer was self-assembled on $SiO_2$ surface by a dip-coating method under strictly controlled relative humidity (< 18%RH). The quality of APS-SAM and PEDOT thin film were investigated with a contact angle analyzer, AFM, FE-SEM, and four-point probe. The investigation showed that a PEDOT film grown on the humidity-controlled SAM is very smooth and compact (sheet resistivity = 20.2 Ohm/sq) while a film grown under the uncontrolled condition is nearly amorphous and contains quite many pores (sheet resistivity = 200 Ohm/sq). Therefore, this study clearly proves that a highly improved quality of APSSAM can offer a highly conductive PEDOT electrode thin film on it.

Carbon-13 CP MAS NMR Study on Structures of Octadecyl Chains Influenced by Co-Presence of 3-Aminopropyl Chains on SBA-15

  • Han, Oc-Hee;Bae, Yoon-Kyung;Jeong, Soon-Yong
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.2
    • /
    • pp.405-407
    • /
    • 2008
  • Functionalized SAB-15 samples by octadecyltrimethoxysilane (OTC) were studied by 13C magic angle spinning (MAS) cross polarization (CP) nuclear magnetic resonance (NMR) spectroscopy. In the SBA-15 sample fully functionalized by 3-aminopropyltrimethoxysilane (APS) and OTC in 1:1 molar ratio, octadecyl chains were observed to have, on average, more trans conformation than those in the SBA-15 samples fully modified by OTC only. Our results confirm that long chain molecules tend to organize themselves better in the co-presence of short chain molecules on the surface of mesoporous materials by packing of the different length chains in an interdigitized fashion even when the short chains are long enough to have three carbons and a functional group at the ends. In addition, our results indicate that solid-state 13C CP MAS NMR spectroscopy is a simple and non-destructive method to probe the molecular structures of the domains composed of long alkyl chains.

A Study on Refresh Time Improvement of DRAM using the MEDICI Simulator (MEDICI 시뮬레이터를 이용한 DRAM의 Refresh 시간 개선에 관한 연구)

  • 이용희;이천희
    • Journal of the Korea Society for Simulation
    • /
    • v.9 no.4
    • /
    • pp.51-58
    • /
    • 2000
  • The control of the data retention time is a main issue for realizing future high density dynamic random access memory. The novel junction process scheme in sub-micron DRAM cell with STI(Shallow Trench Isolation) has been investigated to improve the tail component in the retention time distribution which is of great importance in DRAM characteristics. In this' paper, we propose the new implantation scheme by gate-related ion beam shadowing effect and buffer-enhanced ${\Delta}Rp$ (projected standard deviation) increase using buffered N-implantation with tilt and 4X(4 times)-rotation that is designed on the basis of the local-field-enhancement model of the tail component. We report an excellent tail improvement of the retention time distribution attributed to the reduction of electric field across the cell junction due to the redistribution of N-concentration which is Intentionally caused by ion Beam Shadowing and Buffering Effect using tilt implantation with 4X-rotation. And also, we suggest the least requirements for adoption of this new implantation scheme and the method to optimize the key parameters such as tilt angle, rotation number, Rp compensation and Nd/Na ratio. We used MEDICI Simulator to confirm the junction device characteristics. And measured the refresh time using the ADVAN Probe tester.

  • PDF