The advanced computer network technology enables connectivity of computers through an open network environment. There has been growing numbers of security threat to the networks. Therefore, it requires intrusion detection and prevention technologies. In this paper, we propose a network based intrusion detection model using Fuzzy Cognitive Maps(FCM) that can detect intrusion by the Denial of Service(DoS) attack detection method adopting the packet analyses. A DoS attack appears in the form of the Probe and Syn Flooding attack which is a typical example. The Sp flooding Preventer using Fuzzy cognitive maps(SPuF) model captures and analyzes the packet information to detect Syn flooding attack. Using the result of analysis of decision module, which utilized FCM, the decision module measures the degree of danger of the DoS and trains the response module to deal with attacks. The result of simulating the "KDD ′99 Competition Data Set" in the SPuF model shows that the Probe detection rates were over 97 percentages.
Journal of information and communication convergence engineering
/
제7권1호
/
pp.7-12
/
2009
The advanced computer network and Internet technology enables connectivity of computers through an open network environment. Despite the growing numbers of security threats to networks, most intrusion detection identifies security attacks mainly by detecting misuse using a set of rules based on past hacking patterns. This pattern matching has a high rate of false positives and can not detect new hacking patterns, making it vulnerable to previously unidentified attack patterns and variations in attack and increasing false negatives. Intrusion detection and prevention technologies are thus required. We proposed a network based hybrid Probe Intrusion Detection model using Fuzzy cognitive maps (PIDuF) that detects intrusion by DoS (DDoS and PDoS) attack detection using packet analysis. A DoS attack typically appears as a probe and SYN flooding attack. SYN flooding using FCM model captures and analyzes packet information to detect SYN flooding attacks. Using the result of decision module analysis, which used FCM, the decision module measures the degree of danger of the DoS and trains the response module to deal with attacks. For the performance evaluation, the "IDS Evaluation Data Set" created by MIT was used. From the simulation we obtained the max-average true positive rate of 97.064% and the max-average false negative rate of 2.936%. The true positive error rate of the PIDuF is similar to that of Bernhard's true positive error rate.
IT 시스템 기반의 네트워크 환경의 급속한 발전은 지속적인 연구방향의 중요한 이슈의 결과이다. 침입시도 탐지는 관심분야의 하나인 것이다. 최근에 다양한 기술을 기반으로 하는 침입시도탐지들이 제안되고 있으나 이러한 기술은 여러 형태의 침입시도의 패턴 중에 한가지 형태 및 시스템에 적용이 가능한 것이다. 또한 새로운 형태 침입시도를 탐지하지 못하고 있다. 그러므로 새로운 형태를 인식하는 침입탐지 관련 기술이 요구되어 지고 있다. 본 연구에서는 퍼지인식도와 비정상 트래픽 분석을 이용한 네트워크 기반의 침입탐지기법(NePID)을 제안한다. 이 제안은 패킷 분석을 통하여 서비스거부공격과 유사한 침입시도를 탐지하는 것이다. 서비스거부공격은 침입시도의 형태를 나타내며 대표적인 공격으로는 syn flooding 공격이 있다 제안한 기법은 syn flooding을 탐지하기 위하여 패킷정보를 수집 및 분석한다. 또한 피지인식도와 비정상 트래픽 분석을 적용하여 판단모듈의 분석 결과를 토대로 기존의 서비스 거부 공격의 탐지 툴과의 비교분석을 하였으며 실험데이터로는 MIT Lincoln 연구실의 IDS 평가데이터 (KDD'99)를 이용하였다. 시뮬레이션 결과 최대평균 positive rate는 97.094% 탐지율과 negative rate는 2.936%을 얻었으며 이 결과치는 KDD'99의 우승자인 Bernard의 결과치와 유사한 수준의 값을 나타내었다.
Nowadays, networked computer systems play an increasingly important role in our society and its economy. They have become the targets of a wide array of malicious attacks that invariably turn into actual intrusions. This is the reason computer security has become an essential concern for network administrators. Recently, a number of Detection/Prevention System schemes have been proposed based on various technologies. However, the techniques, which have been applied in many systems, are useful only for the existing patterns of intrusion. Therefore, probe detection has become a major security protection technology to detection potential attacks. Probe detection needs to take into account a variety of factors ant the relationship between the various factors to reduce false negative & positive error. It is necessary to develop new technology of probe detection that can find new pattern of probe. In this paper, we propose an hybrid probe detection using Fuzzy Cognitive Map(FCM) and Self Adaptive Module(SAM) in dynamic environment such as Cloud and IoT. Also, in order to verify the proposed method, experiments about measuring detection rate in dynamic environments and possibility of countermeasure against intrusion were performed. From experimental results, decrease of false detection and the possibilities of countermeasures against intrusions were confirmed.
The advanced computer network technology enables connectivity of computers through an open network environment. There has been growing numbers of security threat to the networks. Therefore, it requires intrusion detection and prevention technologies. In this paper, we propose a network based intrusion detection model using FCM(Fuzzy Cognitive Maps) that can detect intrusion by the DoS attack detection method adopting the packet analyses. A DoS attack appears in the form of the Probe and Syn Flooding attack which is a typical example. The SPuF(Syn flooding Preventer using Fussy cognitive maps) model captures and analyzes the packet informations to detect Syn flooding attack. Using the result of analysis of decision module, which utilized FCM, the decision module measures the degree of danger of the DoS and trains the response module to deal with attacks. For the performance comparison, the "KDD′99 Competition Data Set" made by MIT Lincoln Labs was used. The result of simulating the "KDD′99 Competition Data Set" in the SPuF model shows that the probe detection rates were over 97 percentages.
본 논문에서는 "퍼지 컨트롤 언어를 이용한 공격 특징 선택기반 네트워크 침입탐지 시스템"[1]과 "RNN을 이용한 공격 분류를 위한 지능형 침입탐지 시스템 모델"[2]의 성능을 비교 하였다. 이 논문에서는 KDD CUP 99 데이터 셋[3]을 이용하여 두 기법의 침입 탐지 성능을 비교하였다. KDD CUP 99 데이터 셋에는 훈련을 위한 데이터 셋과 훈련을 통해 기존의 침입을 탐지 할 수 있는 테스트 데이터 셋이 있다. 또한 훈련 데이터 및 테스트 데이터에 존재 하지 않는 침입의 유형을 탐지할 수 있는가를 테스트 할 수 있는 데이터도 존재한다. 훈련 및 테스트 데이터에서 좋은 침입탐지 성능을 보이는 두 개의 논문을 비교하였다. 비교한 결과 존재하는 침입을 탐지 하는 성능은 우수하지만 기존에 존재하지 않는 침입을 탐지 하는 성능은 부족한 부분이 있다. 공격 유형 중 DoS, Probe, R2L는 퍼지를 이용하는 것이 탐지율이 높았고, U2L은 RNN을 이용하는 것이 탐지율이 높았다.
IDS/IPS and networked computer systems are playing an increasingly important role in our society. They have been the targets of a malicious attacks that actually turn into intrusions. That is why computer security has become an important concern for network administrators. Recently, various Detection/Prevention System schemes have been proposed based on various technologies. However, the techniques, which have been applied in many systems is useful for existing intrusion patterns on standard-only systems. Therefore, probe detection of private clouds using BlockChain has become a major security protection technology to detection potential attacks. In addition, BlockChain and Probe detection need to take into account the relationship between the various factors. We should develop a new probe detection technology that uses BlockChain to fine new pattern detection probes in cloud service security in the end. In this paper, we propose a probe detection using Fuzzy Cognitive Map(FCM) and Self Adaptive Module(SAM) based on service security using BlockChain technology.
현재는 인터넷 이용자들이 급격하게 증가하고 있으며, 초보수준의 일반 네트워크 사용자들도 인터넷상의 공개된 해킹 도구들을 사용하여 고도의 기술을 요하는 침임이 가능해졌기 때문에 해킹 문제가 더욱 심각해지고 있다. 해커들이 침입하기 위하여 취약점을 알아내려고 의도하는 다양한 형태의 침입시도들을 탐지하여 침입이 일어나는 것을 사전에 방어할 수 있는 침입시도탐지가 적극적인 예방 차원에서 더욱 필요하다. 기존의 포트 스캔이나 네트워크 취약점 검색 공격에 대응하기 위한 네트워크 기반의 비정상 침입시도 탐지 알고리즘들은 침입시도탐지에 있어 몇 가지 한계점을 갖고 있다. 기존 알고리즘들의 취약성은 Slow Scan과 Coordinated Scan을 한 경우 탐지한 수 없다. 따라서, 침입시도 유형에 제한을 받지 않고 침입시도에 관한 다양한 형태의 비정상 접속을 효과적으로 탐지할 수 있는 새로운 개념의 알고리즘이 요구된다. 본 논문에서는 평상시 정상적인 서비스 패턴을 가지고 그 패턴과 다른 비정상 서비스 패턴이 보이면 이를 침입시도로 탐지하는 개념의 SPAD(Session Pattern Anomaly Detector) 기법을 제안한다.
기존의 패킷 교환 네트워크는 해킹과 같은 보안 공격에 많은 취약점을 가지고 있다. 침입차단시스템 (Firewall system)과 침입탐지 시스템 (Intrusion Detection system)같은 보안 시스템이 개발되고 있지만 DOS나 Probe등을 비롯한 다양한 공격에 대해 적극적으로 대처 할 수 없다. 결과 DARPA를 비롯한 여러 기관에서 전송중인 액티브 패킷이 라우터에서 관리자의 정책을 담고 있는 코드를 실행할 수 있고 그 코드의 실행결과에 따라 라우터의 상태를 변경할 수 있는 액티브 네트워크 전반적인 구조를 제안하였다. 하지만 액티브 네트워크에서 중요한 것은 기존 네트워크와 달리 액티브 패킷이 액티브 노드의 자원에 접근함으로써 발생하게 되는 네트워크 보안이다. 따라서 액티브 노드의 NodeOs단에 Crypto engine, Integrity Engine, Authentication Engine, Authorization Engine등을 비롯한 액티브 노드 인증 및 액티브 패킷/코드 인증 보안 모듈을 둠으로써 액티브 노드 간 서로 안전한 협업적 관리를 통해 보안을 강화한다.
이상 탐지는 일반적인 사용자들의 데이터 집합 속에서 비정상적인 데이터 흐름을 파악하여 미리 차단하는 방법이다. 기존에 알려진 방식은 이미 알려진 공격의 시그니처를 활용하여 시그니처 기반으로 공격을 탐지 및 방어하는 방식인데, 이는 오탐율이 낮다는 장점이 있지만 제로 데이 취약점 공격이나 변형된 공격에 대해서는 매우 취약하다는 점이 문제점이다. 하지만 이상 탐지의 경우엔 오탐율이 높다는 단점이 존재하지만 제로 데이 취약점 공격이나 변형된 공격에 대해서도 식별하여 탐지 및 차단할 수 있다는 장점이 있어 관련 연구들이 활발해지고 있는 중이다. 본 연구에서는 이 중 이상 탐지 메커니즘에 대해 다뤘다. 앞서 말한 단점인 높은 오탐율을 보완하며 그와 더불어 이상 탐지와 분류를 동시에 수행하는 새로운 메커니즘을 제안한다. 본 연구에서는 여러 알고리즘의 특성을 고려하여 5가지의 구성으로 실험을 진행하였다. 그 결과로 가장 우수한 정확도를 보이는 모델을 본 연구의 결과로 제안하였다. Extra Tree와 Three layer ANN을 동시에 적용하여 공격 여부를 탐지한 후 공격을 분류된 데이터에 대해서는 Extra Tree를 활용하여 공격 유형을 분류하게 된다. 본 연구에서는 NSL-KDD 데이터 세트에 대해서 검증을 진행하였으며, Accuracy는 Normal, Dos, Probe, U2R, R2L에 대하여 각각 99.8%, 99.1%, 98.9%, 98.7%, 97.9%의 결과를 보였다. 본 구성은 다른 모델에 비해 우수한 성능을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.