• Title/Summary/Keyword: Probability Robot

Search Result 94, Processing Time 0.028 seconds

Real-Time Tomato Instance Tracking Algorithm by using Deep Learning and Probability Model (딥러닝과 확률모델을 이용한 실시간 토마토 개체 추적 알고리즘)

  • Ko, KwangEun;Park, Hyun Ji;Jang, In Hoon
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.1
    • /
    • pp.49-55
    • /
    • 2021
  • Recently, a smart farm technology is drawing attention as an alternative to the decline of farm labor population problems due to the aging society. Especially, there is an increasing demand for automatic harvesting system that can be commercialized in the market. Pre-harvest crop detection is the most important issue for the harvesting robot system in a real-world environment. In this paper, we proposed a real-time tomato instance tracking algorithm by using deep learning and probability models. In general, It is hard to keep track of the same tomato instance between successive frames, because the tomato growing environment is disturbed by the change of lighting condition and a background clutter without a stochastic approach. Therefore, this work suggests that individual tomato object detection for each frame is conducted by YOLOv3 model, and the continuous instance tracking between frames is performed by Kalman filter and probability model. We have verified the performance of the proposed method, an experiment was shown a good result in real-world test data.

Real-Time Motion Estimation Algorithm for Mobile Surveillance Robot (모바일 감시 로봇을 위한 실시간 움직임 추정 알고리즘)

  • Han, Cheol-Hoon;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.3
    • /
    • pp.311-316
    • /
    • 2009
  • This paper presents the motion estimation algorithm on real-time for mobile surveillance robot using particle filter. the particle filter that based on the monte carlo's sampling method, use bayesian conditional probability model which having prior distribution probability and posterior distribution probability. However, the initial probability density was set to define randomly in the most of particle filter. In this paper, we find first the initial probability density using Sum of Absolute Difference(SAD). and we applied it in the partical filter. In result, more robust real-time estimation and tracking system on the randomly moving object was realized in the mobile surveillance robot environments.

Improved Exploration Algorithm Using Reliability Index of Thinning Based Topological Nodes

  • Kwon, Tae-Bum;Song, Jae-Bok;Lee, Soo-Yong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.250-255
    • /
    • 2005
  • For navigation of a service robot, mapping and localization are very important. To estimate the robot pose, the map of the environment is required and it can be built by exploration or SLAM. Exploration is the fundamental task of guiding a robot autonomously during mapping such that it covers the entire environment with its sensors. In this paper, an efficient exploration scheme based on the position probability of the end nodes of a topological map is proposed. In this scheme, a topological map is constructed in real time using the thinning-based approach. The robot then updates the position probability of each end node maintaining its position at the current location based on the Bayesian update rule using the range data. From this probability, the robot can determine whether or not it needs to visit the specific end node to examine the environment around this node. Various experiments show that the proposed exploration scheme can perform exploration more efficiently than other schemes in that, in most cases, exploration for the entire environment can be completed without directly visiting everywhere in the environment.

  • PDF

Recursive Unscented Kalman Filtering based SLAM using a Large Number of Noisy Observations

  • Lee, Seong-Soo;Lee, Suk-Han;Kim, Dong-Sung
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.6
    • /
    • pp.736-747
    • /
    • 2006
  • Simultaneous Localization and Map Building(SLAM) is one of the fundamental problems in robot navigation. The Extended Kalman Filter(EKF), which is widely adopted in SLAM approaches, requires extensive computation. The conventional particle filter also needs intense computation to cover a high dimensional state space with particles. This paper proposes an efficient SLAM method based on the recursive unscented Kalman filtering in an environment including a large number of landmarks. The posterior probability distributions of the robot pose and the landmark locations are represented by their marginal Gaussian probability distributions. In particular, the posterior probability distribution of the robot pose is calculated recursively. Each landmark location is updated with the recursively updated robot pose. The proposed method reduces filtering dimensions and computational complexity significantly, and has produced very encouraging results for navigation experiments with noisy multiple simultaneous observations.

Mobile Robot Path Planner for Environment Exploration (효율적 환경탐사를 위한 이동로봇 경로 계획기)

  • Bae, Jung-Yun;Lee, Soo-Yong;Lee, Beom-Hee
    • The Journal of Korea Robotics Society
    • /
    • v.1 no.1
    • /
    • pp.9-16
    • /
    • 2006
  • The Mobile robots are increasingly being used to perform tasks in unknown environments. The potential of robots to undertake such tasks lies in their ability to intelligently and efficiently search in an environment. An algorithm has been developed for robots which explore the environment to measure the physical properties (dust in this paper). While the robot is moving, it measures the amount of dust and registers the value in the corresponding grid cell. The robot moves from local maximum to local minimum, then to another local maximum, and repeats. To reach the local maximum or minimum, simple gradient following is used. Robust estimation of the gradient using perturbation/correlation, which is very effective when analytical solution is not available, is described. By introducing the probability of each grid cell, and considering the probability distribution, the robot doesn't have to visit all the grid cells in the environment still providing fast and efficient sensing. The extended algorithm to coordinate multiple robots is presented with simulation results.

  • PDF

Sonar Map Construction for Autonomous Mobile Robots Using Data Association Filter (데이터 연관 필터를 이용한 자율이동로봇의 초음파지도 작성)

  • Lee Yu-Chul;Lim Jong-Hwan;Cho Dong-Woo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.9
    • /
    • pp.539-546
    • /
    • 2005
  • This paper describes a method of building the probability grid map for an autonomous mobile robot using the ultrasonic DAF(data association filter). The DAF, which evaluates the association of each data with the rest and removes the data affected by the specular reflection effect, can improve the reliability of the data for the Probability grid map. This method is based on the evaluation of possibility that the acquired data are all from the same object. Namely, the data from specular reflection have very few possibilities of detecting the same object, so that they are excluded from the data cluster during the process of the DAF. Therefore, the uncertain data corrupted by the specular reflection and/or multi-path effect, are not used to update the probability map, and hence building a good quality of a grid map is possible even in a specular environment. In order to verify the effectiveness of the DAF, it was applied to the Bayesian model and the orientation probability model which are the typical ones of a grid map. We demonstrate the experimental results using a real mobile robot in the real world.

An analysis of the component of Human-Robot Interaction for Intelligent room

  • Park, Jong-Chan;Kwon, Dong-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2143-2147
    • /
    • 2005
  • Human-Robot interaction (HRI) has recently become one of the most important issues in the field of robotics. Understanding and predicting the intentions of human users is a major difficulty for robotic programs. In this paper we suggest an interaction method allows the robot to execute the human user's desires in an intelligent room-based domain, even when the user does not give a specific command for the action. To achieve this, we constructed a full system architecture of an intelligent room so that the following were present and sequentially interconnected: decision-making based on the Bayesian belief network, responding to human commands, and generating queries to remove ambiguities. The robot obtained all the necessary information from analyzing the user's condition and the environmental state of the room. This information is then used to evaluate the probabilities of the results coming from the output nodes of the Bayesian belief network, which is composed of the nodes that includes several states, and the causal relationships between them. Our study shows that the suggested system and proposed method would improve a robot's ability to understand human commands, intuit human desires, and predict human intentions resulting in a comfortable intelligent room for the human user.

  • PDF

Improvement of location positioning using KNN, Local Map Classification and Bayes Filter for indoor location recognition system

  • Oh, Seung-Hoon;Maeng, Ju-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.6
    • /
    • pp.29-35
    • /
    • 2021
  • In this paper, we propose a method that combines KNN(K-Nearest Neighbor), Local Map Classification and Bayes Filter as a way to increase the accuracy of location positioning. First, in this technique, Local Map Classification divides the actual map into several clusters, and then classifies the clusters by KNN. And posterior probability is calculated through the probability of each cluster acquired by Bayes Filter. With this posterior probability, the cluster where the robot is located is searched. For performance evaluation, the results of location positioning obtained by applying KNN, Local Map Classification, and Bayes Filter were analyzed. As a result of the analysis, it was confirmed that even if the RSSI signal changes, the location information is fixed to one cluster, and the accuracy of location positioning increases.

Designing the Moving Pattern of Cleaning Robot based on Grammatical Evolution with Conditional Probability Table (문법적 진화기법과 조건부 확률을 이용한 청소 로봇의 이동 패턴 계획)

  • Gwon, Soon-Joe;Kim, Hyun-Tae;Ahn, Chang Wook
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.4
    • /
    • pp.184-188
    • /
    • 2016
  • The cleaning robot is popularly used as a home appliance. The state-of-the-art cleaning robot can clean more efficiently by using information gathered from its sensor, which is difficult for low-price cleaning robots due to limitation in this aspect. In this paper, we suggested a method for the moving pattern of cleaning robot based on grammatical evolution. Optimized program is generated by using moving pattern grammar, which is defined by Backus-Naur form. In addition, conditional probability is used between each of the grammar elements during the program creation process. The proposed method is evaluated by robot simulation in order to verify its performance and further compare it with existing algorithms. The experiment results showed that the proposed method is better than the compared algorithms.

A Region Search Algorithm and Improved Environment Map Building for Mobile Robot Navigation

  • Jin, Kwang-Sik;Jung, Suk-Yoon;Son, Jung-Su;Yoon, Tae-Sung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.71.1-71
    • /
    • 2001
  • In this paper, an improved method of environment map building and a region search algorithm for mobile robot are presented. For the environment map building of mobile robot, measurement data of ultrasonic sensors and certainty grid representation is usually used. In this case, inaccuracies due to the uncertainty of ultrasonic data are included in the map. In order to solve this problem, an environment map building method using a Bayesian model was proposed previously[5]. In this study, we present an improved method of probability map building that uses infrared sensors and shift division Gaussian probability distribution with the existing Bayesian update method using ultrasonic sensors. Also, a region search algorithm for ...

  • PDF