• Title/Summary/Keyword: Probability Precipitation

Search Result 211, Processing Time 0.019 seconds

Evaluation of Extreme Rainfall based on Typhoon using Nonparametric Monte Carlo Simulation and Locally Weighted Polynomial Regression (비매개변수적 모의발생기법과 지역가중다항식을 이용한 태풍의 극치강우량 평가)

  • Oh, Tae-Suk;Moon, Young-Il;Chun, Si-Young;Kwon, Hyun-Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2B
    • /
    • pp.193-205
    • /
    • 2009
  • Typhoons occurred in the tropical Pacific region, these might be affected the Korea moving toward north. The strong winds and the heavy rains by the typhoons caused a natural disaster in Korea. In the research, the heavy rainfall events based on typhoons were evaluated quantitative through various statistical techniques. First, probability precipitation and typhoon probability precipitation were compared using frequency analysis. Second, EST probability precipitation was calculated by Empirical Simulation Techniques (EST). Third, NL probability precipitation was estimated by coupled Nonparametric monte carlo simulation and Locally weighted polynomial regression. At the analysis results, the typhoons can be effected Gangneung and Mokpo stations more than other stations. Conversely, the typhoons can be effected Seoul and Inchen stations less than other stations. Also, EST and NL probability precipitation were estimated by the long-term simulation using observed data. Consequently, major hydrologic structures and regions where received the big typhoons impact should be review necessary. Also, EST and NL techniques can be used for climate change by the global warming. Because, these techniques used the relationship between the heavy rainfall events and the typhoons characteristics.

Statistical Analysis of Irrigation Reservoir Water Supply Index (관개용저수지 용수공급지수(IRWSI)의 확률통계 분석)

  • 김선주;이광야;강상진
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.4
    • /
    • pp.58-66
    • /
    • 1998
  • Irrigation Reservoir Water Supply Index(IRWSI), which can be applied to the effective supply and management of the irrigation water resources, was developed. IRWSI was formulated as resealed nonexceedance probabilities of two hydrologic components : reservoir storage ratio and precipitation. To generate nonexceedance probability of hydrologic component, it was important to define the optimal one among the various probability distribution function in the state of nature. To define an optimal probability distribution, in this study, four types of probability distribution function were tested by the K-S fitting, and for the calculation of IRWSI, reservoir storage ratio(%) and precipitation used Normal distribution & Gamma distribution, respectively. In this study, the weight coefficients of a and b for each hydrologic component, which is precipitation and reservoir storage ratio, was decided as 0.8 and 0.2, respectively. While some studies changed weight coefficients according to the size of basin area, this study used same values without considering that. From the analysis of drought characteristics, it was found that the IRWSI was sensitive to the size of irrigation area rather than the size of basin area, and the south-eastern region of Korea had been suffered from severe drought damage.

  • PDF

A Simulation Model for the Intermittent Hydrologic Process (II) - Markov Chain and Continuous Probability Distribution - (간헐(間歇) 수문과정(水文過程)의 모의발생(模擬發生) 모형(模型)(II) - Markov 연쇄와 연속확률분포(連續確率分布) -)

  • Lee, Jae Joon;Lee, Jung Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.523-534
    • /
    • 1994
  • The purpose of this study is to develop computer simulation model that produce precipitation patterns from stochastic model. In the paper(I) of this study, the alternate renewal process(ARP) is used for the daily precipitation series. In this paper(Il), stochastic simulation models for the daily precipitation series are developed by combining Markov chain for the precipitation occurrence process and continuous probability distribution for the precipitation amounts on the wet days. The precipitation occurrence is determined by first order Markov chain with two states(dry and wet). The amounts of precipitation, given that precipitation has occurred, are described by a Gamma, Pearson Type-III, Extremal Type-III, and 3 parameter Weibull distribution. Since the daily precipitation series shows seasonal variation, models are identified for each month of the year separately. To illustrate the application of the simulation models, daily precipitation data were taken from records at the seven locations of the Nakdong and Seomjin river basin. Simulated data were similar to actual data in terms of distribution for wet and dry spells, seasonal variability, and precipitation amounts.

  • PDF

An Estimation of Probable Precipitation and an Analysis of Its Return Period and Distributions in Busan (부산지역 확률강수량 결정에 따른 재현기간 및 분포도 분석)

  • Lim, Yun-Kyu;Moon, Yun-Seob;Kim, Jin-Seog;Song, Sang-Keun;Hwang, Yong-Sik
    • Journal of the Korean earth science society
    • /
    • v.33 no.1
    • /
    • pp.39-48
    • /
    • 2012
  • In this study, a statistical estimation of probable precipitation and an analysis of its return period in Busan were performed using long-term precipitation data (1973-2007) collected from the Busan Regional Meteorological Administration. These analyses were based on the method of probability weighted moments for parameter estimation, the goodness-of-fit test of chi-square ($x^2$) and the probability plot correlation coefficient (PPCC), and the generalized logistics (GLO) for optimum probability distribution. Moreover, the spatial distributions with the determination of probable precipitation were also investigated using precipitation data observed at 15 Automatic Weather Stations (AWS) in the target area. The return periods for the probable precipitation of 245.2 and 280.6 mm/6 hr with GLO distributions in Busan were estimated to be about 100 and 200 years, respectively. In addition, the high probable precipitation for 1-, 3-, 6-, and 12-hour durations was mostly distributed around Dongrae-gu site, all coastal sites in Busan, Busanjin and Yangsan sites, and the southeastern coastal and Ungsang sites, respectively.

Development and Evaluation of the High Resolution Limited Area Ensemble Prediction System in the Korea Meteorological Administration (기상청 고해상도 국지 앙상블 예측 시스템 구축 및 성능 검증)

  • Kim, SeHyun;Kim, Hyun Mee;Kay, Jun Kyung;Lee, Seung-Woo
    • Atmosphere
    • /
    • v.25 no.1
    • /
    • pp.67-83
    • /
    • 2015
  • Predicting the location and intensity of precipitation still remains a main issue in numerical weather prediction (NWP). Resolution is a very important component of precipitation forecasts in NWP. Compared with a lower resolution model, a higher resolution model can predict small scale (i.e., storm scale) precipitation and depict convection structures more precisely. In addition, an ensemble technique can be used to improve the precipitation forecast because it can estimate uncertainties associated with forecasts. Therefore, NWP using both a higher resolution model and ensemble technique is expected to represent inherent uncertainties of convective scale motion better and lead to improved forecasts. In this study, the limited area ensemble prediction system for the convective-scale (i.e., high resolution) operational Unified Model (UM) in Korea Meteorological Administration (KMA) was developed and evaluated for the ensemble forecasts during August 2012. The model domain covers the limited area over the Korean Peninsula. The high resolution limited area ensemble prediction system developed showed good skill in predicting precipitation, wind, and temperature at the surface as well as meteorological variables at 500 and 850 hPa. To investigate which combination of horizontal resolution and ensemble member is most skillful, the system was run with three different horizontal resolutions (1.5, 2, and 3 km) and ensemble members (8, 12, and 16), and the forecasts from the experiments were evaluated. To assess the quantitative precipitation forecast (QPF) skill of the system, the precipitation forecasts for two heavy rainfall cases during the study period were analyzed using the Fractions Skill Score (FSS) and Probability Matching (PM) method. The PM method was effective in representing the intensity of precipitation and the FSS was effective in verifying the precipitation forecast for the high resolution limited area ensemble prediction system in KMA.

The Study on Application of Regional Frequency Analysis using Kernel Density Function (핵밀도 함수를 이용한 지역빈도해석의 적용에 관한 연구)

  • Oh, Tae-Suk;Kim, Jong-Suk;Moon, Young-Il;Yoo, Seung-Yeon
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.10 s.171
    • /
    • pp.891-904
    • /
    • 2006
  • The estimation of the probability precipitation is essential for the design of hydrologic projects. The techniques to calculate the probability precipitation can be determined by the point frequency analysis and the regional frequency analysis. The regional frequency analysis includes index-flood technique and L-moment technique. In the regional frequency analysis, even if the rainfall data passed homogeneity, suitable distributions can be different at each point. However, the regional frequency analysis can supplement the lacking precipitation data. Therefore, the regional frequency analysis has weaknesses compared to parametric point frequency analysis because of suppositions about probability distributions. Therefore, this paper applies kernel density function to precipitation data so that homogeneity is defined. In this paper, The data from 16 rainfall observatories were collected and managed by the Korea Meteorological Administration to achieve the point frequency analysis and the regional frequency analysis. The point frequency analysis applies parametric technique and nonparametric technique, and the regional frequency analysis applies index-flood techniques and L-moment techniques. Also, the probability precipitation was calculated by the regional frequency analysis using variable kernel density function.

Change-Point in the Recent (1976-2005) Precipitation over South Korea (우리나라에서 최근 (1976-2005) 강수의 변화 시점)

  • Kim, Chansoo;Suh, Myoung-Seok
    • Atmosphere
    • /
    • v.18 no.2
    • /
    • pp.111-120
    • /
    • 2008
  • This study presents a change-point in the 30 years (1976-2005) time series of the annual and the heavy precipitation characteristics (amount, days and intensity) averaged over South Korea using Bayesian approach. The criterion for the heavy precipitation used in this study is 80 mm/day. Using non-informative priors, the exact Bayes estimators of parameters and unknown change-point are obtained. Also, the posterior probability and 90% highest posterior density credible intervals for the mean differences between before and after the change-point are examined. The results show that a single change-point in the precipitation intensity and the heavy precipitation characteristics has occurred around 1996. As the results, the precipitation intensity and heavy precipitation characteristics have clearly increased after the change-point. However, the annual precipitation amount and days show a statistically insignificant single change-point model. These results are consistent with earlier works based on a simple linear regression model.

Predicting Probability of Precipitation Using Artificial Neural Network and Mesoscale Numerical Weather Prediction (인공신경망과 중규모기상수치예보를 이용한 강수확률예측)

  • Kang, Boosik;Lee, Bongki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5B
    • /
    • pp.485-493
    • /
    • 2008
  • The Artificial Neural Network (ANN) model was suggested for predicting probability of precipitation (PoP) using RDAPS NWP model, observation at AWS and upper-air sounding station. The prediction work was implemented for flood season and the data period is the July, August of 2001 and June of 2002. Neural network input variables (predictors) were composed of geopotential height 500/750/1000 hPa, atmospheric thickness 500-1000 hPa, X & Y-component of wind at 500 hPa, X & Y-component of wind at 750 hPa, wind speed at surface, temperature at 500/750 hPa/surface, mean sea level pressure, 3-hr accumulated precipitation, occurrence of observed precipitation, precipitation accumulated in 6 & 12 hrs previous to RDAPS run, precipitation occurrence in 6 & 12 hrs previous to RDAPS run, relative humidity measured 0 & 12 hrs before RDAPS run, precipitable water measured 0 & 12 hrs before RDAPS run, precipitable water difference in 12 hrs previous to RDAPS run. The suggested ANN has a 3-layer perceptron (multi layer perceptron; MLP) and back-propagation learning algorithm. The result shows that there were 6.8% increase in Hit rate (H), especially 99.2% and 148.1% increase in Threat Score (TS) and Probability of Detection (POD). It illustrates that the suggested ANN model can be a useful tool for predicting rainfall event prediction. The Kuipers Skill Score (KSS) was increased 92.8%, which the ANN model improves the rainfall occurrence prediction over RDAPS.

Evaluation of Probability Precipitation using Climatic Indices in Korea (기상인자를 이용한 우리나라의 확률강수량 평가)

  • Oh, Tae-Suk;Moon, Young-Il
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.9
    • /
    • pp.681-690
    • /
    • 2009
  • In this research, design precipitation was calculated by reflecting the climatic indices and its uncertainty assessment was evaluated. Climatic indices used the sea surface temperature and moisture index which observed globally. The correlation coefficients were calculated between the annual maximum precipitation and the climatic indices. and then climatic indices which have the larger correlation coefficient were selected. Therefore, the regression relationship was established by a locally weighted polynomial regression. Next, climatic indices were generated by montecarlo simulation using kernel function. Finally, the design rainfall was calculated by the locally weighted polynomial regression using generated climatic indices. At the result, the comparison of design rainfall between the reflection of the climatic indices and the frequency analysis did not indicate a significant difference. Also, this result can be used as basic data for calculation of probability precipitation to reflect climate change.

Conversion Factor Calculation of Annual Maximum Precipitation in Korea Between Fixed and Sliding Durations (고정시간과 임의시간에 따른 우리나라 연최대강우량의 환산계수 산정)

  • Oh, Tae Suk;Moon, Young-Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5B
    • /
    • pp.515-524
    • /
    • 2008
  • An estimation of reliable probability precipitation is one of the most important processes for reasonable hydrologic structure design. A probability precipitation has been calculated by frequency analysis using annual maximum rainfall series on the each duration among the observed rainfall data. Annual maximum rainfall series have abstracted on hourly rainfall data or daily rainfall data. So, there is necessary to proper conversion factor between the fixed and sliding durations. Therefore, in this study, conversion factors on the each duration between fixed and sliding durations have calculated using minutely data compared to hourly and daily data of 37 stations observed by Meteorological Administration in Korea. Also, regression equations were computed by regression analysis of conversion factors on the each duration. Consequently, conversion factors were used basis data for calculations of stable probability precipitation.