• Title/Summary/Keyword: Probability Map

Search Result 354, Processing Time 0.035 seconds

Speech Enhancement Based on Minima Controlled Recursive Averaging Technique Incorporating Conditional MAP (조건 사후 최대 확률 기반 최소값 제어 재귀평균기법을 이용한 음성향상)

  • Kum, Jong-Mo;Park, Yun-Sik;Chang, Joon-Hyuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.5
    • /
    • pp.256-261
    • /
    • 2008
  • In this paper, we propose a novel approach to improve the performance of minima controlled recursive averaging (MCRA) which is based on the conditional maximum a posteriori criterion. A crucial component of a practical speech enhancement system is the estimation of the noise power spectrum. One state-of-the-art approach is the minima controlled recursive averaging (MCRA) technique. The noise estimate in the MCRA technique is obtained by averaging past spectral power values based on a smoothing parameter that is adjusted by the signal presence probability in frequency subbands. We improve the MCRA using the speech presence probability which is the a posteriori probability conditioned on both the current observation the speech presence or absence of the previous frame. With the performance criteria of the ITU-T P.862 perceptual evaluation of speech quality (PESQ) and subjective evaluation of speech quality, we show that the proposed algorithm yields better results compared to the conventional MCRA-based scheme.

BOOLEAN MULTIPLICATIVE CONVOLUTION AND CAUCHY-STIELTJES KERNEL FAMILIES

  • Fakhfakh, Raouf
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.2
    • /
    • pp.515-526
    • /
    • 2021
  • Denote by ��+ the set of probability measures supported on ℝ+. Suppose V�� is the variance function of the Cauchy-Stieltjes Kernel (CSK) family ��-(��) generated by a non degenerate probability measure �� ∈ ��+. We determine the formula for variance function under boolean multiplicative convolution power. This formula is used to identify the relation between variance functions under the map ${\nu}{\mapsto}{\mathbb{M}}_t({\nu})=({\nu}^{{\boxtimes}(t+1)})^{{\uplus}{\frac{1}{t+1}}}$ from ��+ onto itself.

Collision Risk Probability Considerations for Small Divided Areas

  • Guk, Seung-Gi;Fukuda, Gen
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2013.10a
    • /
    • pp.387-389
    • /
    • 2013
  • In order to determine the collision risk, the probability estimation is very important part for accurate risk estimation. Recently, the collision risk at the Busan North Port is studied for making the risk map by authors. The result has been found some connections with previous collision places. For more precise estimation, the probability calculation is necessary. Recently the Bayesian matrix is mainly used for calculating the probabilities. Also considering the oil spill risk with tankers, ships' speed, relative angle and ships' size are key aspect whether breaking the double hull or not. This research presents the way of estimating the probabilities not her research and also the collision risk probability considerations for small divided areas.

  • PDF

MAP/G/1/K QUEUE WITH MULTIPLE THRESHOLDS ON BUFFER

  • Choi, Doo-Il
    • Communications of the Korean Mathematical Society
    • /
    • v.14 no.3
    • /
    • pp.611-625
    • /
    • 1999
  • We consider ΜΑΡ/G/ 1 finite capacity queue with mul-tiple thresholds on buffer. The arrival of customers follows a Markov-ian arrival process(MAP). The service time of a customer depends on the queue length at service initiation of the customer. By using the embeded Markov chain method and the supplementary variable method, we obtain the queue length distribution ar departure epochs and at arbitrary epochs. This gives the loss probability and the mean waiting time by Little's law. We also give a simple numerical examples to apply the overload control in packetized networks.

  • PDF

BOUNDS OF CORRELATION DIMENSIONS FOR SNAPSHOT ATTRACTORS

  • Chang, Sung-Kag;Lee, Mi-Ryeong;Lee, Hung-Hwan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.41 no.2
    • /
    • pp.327-335
    • /
    • 2004
  • In this paper, we reformulate a snapshot attractor([5]), ($K,\;\={\mu_{\iota}}$) generated by a random baker's map with a sequence of probability measures {\={\mu_{\iota}}} on K. We obtain bounds of the correlation dimensions of ($K,\;\={\mu_{\iota}}$) for all ${\iota}\;{\geq}\;1$.

Turbo Equalization using Belief Propagation (Belief Propagation을 이용한 터보 등화기)

  • Lee, Yun-Hee;Choi, Soo-Yong
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.281-282
    • /
    • 2008
  • Turbo equalizers which use MAP (maximum a posteriori probability) equalizer or MMSE (minimum mean square error) equalizer have shown high performance and adoptability [1], [2]. In this paper, we show that the BP (belief propagation) algorithm can also be applied in equalizer and when it is connected with channel code, it can replace the MAP equalizer with similar complexity and performance.

  • PDF

Experimental Result on Map Expansion of Underwater Robot Using Acoustic Range Sonar (수중 초음파 거리 센서를 이용한 수중 로봇의 2차원 지도 확장 실험)

  • Lee, Yeongjun;Choi, Jinwoo;Lee, Yoongeon;Choi, Hyun-Taek
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.2
    • /
    • pp.79-85
    • /
    • 2018
  • This study focuses on autonomous exploration based on map expansion for an underwater robot equipped with acoustic sonars. Map expansion is applicable to large-area mapping, but it may affect localization accuracy. Thus, as the key contribution of this paper, we propose a method for underwater autonomous exploration wherein the robot determines the trade-off between map expansion ratio and position accuracy, selects which of the two has higher priority, and then moves to a mission step. An occupancy grid map is synthesized by utilizing the measurements of an acoustic range sonar that determines the probability of occupancy. This information is then used to determine a path to the frontier, which becomes the new search point. During area searching and map building, the robot revisits artificial landmarks to improve its position accuracy as based on imaging sonar-based recognition and EKF-SLAM if the position accuracy is above the predetermined threshold. Additionally, real-time experiments were conducted by using an underwater robot, yShark, to validate the proposed method, and the analysis of the results is discussed herein.

Vision Based Map-Building Using Singular Value Decomposition Method for a Mobile Robot in Uncertain Environment

  • Park, Kwang-Ho;Kim, Hyung-O;Kee, Chang-Doo;Na, Seung-Yu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.101.1-101
    • /
    • 2001
  • This paper describes a grid mapping for a vision based mobile robot in uncertain indoor environment. The map building is a prerequisite for navigation of a mobile robot and the problem of feature correspondence across two images is well known to be of crucial Importance for vision-based mapping We use a stereo matching algorithm obtained by singular value decomposition of an appropriate correspondence strength matrix. This new correspondence strength means a correlation weight for some local measurements to quantify similarity between features. The visual range data from the reconstructed disparity image form an occupancy grid representation. The occupancy map is a grid-based map in which each cell has some value indicating the probability at that location ...

  • PDF

Noise Removal for Improvement of Occupancy-grid Map

  • Kim, Young-Geun;Choi, Chang-Min;Kim, Hak-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.138.4-138
    • /
    • 2001
  • The purpose of this research is to build a quality-improved occupancy grid map for path-planning of an autonomous mobile robot(AMR) based on the measurements from a single ultrasonic sensor, which are acquired when the autonomous mobile robot explores unknown indoor environment. The AMR navigates in the unknown space by following the wall and gathers the range data using the ultrasonic sensor, from which the occupancy grid map is constructed by associating the range data with occupancy certainties. In order to increase the quality of the map we modify the Bayesian probability updating rule, reject non-systematic measurement errors and correct the predictable error of the AMR itself. These procedures are implemented and tested using an AMR, and primary results are presented in this paper.

  • PDF

Big Numeric Data Classification Using Grid-based Bayesian Inference in the MapReduce Framework

  • Kim, Young Joon;Lee, Keon Myung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.4
    • /
    • pp.313-321
    • /
    • 2014
  • In the current era of data-intensive services, the handling of big data is a crucial issue that affects almost every discipline and industry. In this study, we propose a classification method for large volumes of numeric data, which is implemented in a distributed programming framework, i.e., MapReduce. The proposed method partitions the data space into a grid structure and it then models the probability distributions of classes for grid cells by collecting sufficient statistics using distributed MapReduce tasks. The class labeling of new data is achieved by k-nearest neighbor classification based on Bayesian inference.