• Title/Summary/Keyword: Probabilistic variation

Search Result 172, Processing Time 0.026 seconds

Effects of Structural Parameter Variations on Dynamic Responses (해석(解析)모델의 구조변수(構造變數) 변동(變動)이 동적응답에 미치는 영향(影響))

  • Park, Hyung Ghee;Lim, Boo Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.3
    • /
    • pp.59-67
    • /
    • 1993
  • The variations of the natural frequencies and the peak response acceleration at the top of prestressed concrete reactor building due to random variability and/or model uncertainty of structural parameters are studied. The results may be used as essential input parameters in seismic probabilistic risk assessment or seismic margin assessment of the reactor building. The sensitivity test of each structural parameter is first performed to determine the most influential parameter upon the natural frequency of structure model. Then Monte Carlo simulation technique is applied to evaluate the effect of parameter variation on the natural frequencies and the peak response acceleration. The acceleration time history is obtained by direct integration scheme. As the study results, it is found that the fundamental natural frequency and the peak response acceleration at the top of the building are most strongly affected by Young's modulus among the structural parameters, in which the value of mean plus one standard deviation obtained by probabilistic approach deviates up to about (+)12% from the result of deterministic method. Considering the uncertainty of flexural rigidity, the structural responses vary in range of (-)4%~(+)14%.

  • PDF

Reliability-Based Topology Optimization Based on Bidirectional Evolutionary Structural Optimization (양방향 진화적 구조최적화를 이용한 신뢰성기반 위상최적화)

  • Yu, Jin-Shik;Kim, Sang-Rak;Park, Jae-Yong;Han, Seog-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.4
    • /
    • pp.529-538
    • /
    • 2010
  • This paper presents a reliability-based topology optimization (RBTO) based on bidirectional evolutionary structural optimization (BESO). In design of a structure, uncertain conditions such as material property, operational load and dimensional variation should be considered. Deterministic topology optimization (DTO) is performed without considering the uncertainties related to the design variables. However, the RBTO can consider the uncertainty variables because it can deal with the probabilistic constraints. The reliability index approach (RIA) and the performance measure approach (PMA) are adopted to evaluate the probabilistic constraints in this study. In order to apply the BESO to the RBTO, sensitivity number for each element is defined as the change in the reliability index of the structure due to removal of each element. Smoothing scheme is also used to eliminate checkerboard patterns in topology optimization. The limit state indicates the margin of safety between the resistance (constraints) and the load of structures. The limit State function expresses to evaluate reliability index from finite element analysis. Numerical examples are presented to compare each optimal topology obtained from RBTO and DTO each other. It is verified that the RBTO based on BESO can be effectively performed from the results.

Study for Determination of Management Thresholds of Bridge Structural Health Monitoring System based on Probabilistic Method (확률론적 방법에 의한 교량계측시스템의 관리기준치 설정에 관한 연구)

  • Kim, Haeng-Bae;Song, Jae-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.3
    • /
    • pp.103-110
    • /
    • 2016
  • Recently, structural health monitoring system(SHMS) has been appled cable bridges as the effective maintenance tool and the management threshold is considered to assess the status of the bridge in SHMS. The threshold is generally determined by the allowable limit based on design specification because there is no method and standard for threshold calculation. In case of the conventional thresholds, it is difficult to recognize the event, abnormal behavior and gradual damage within the threshold. Therefore, this study reviewed the problem of previous methods and proposed the advanced methodologies based on probabilistic approach for threshold calculation which can be applied to practice work. Gumbel distribution is adopted in order to calculate the threshold for caution and warning states considering the expectations for return periods of 50 and 100 years. The thresholds were individually determined for measurement data and data variation to detect the various abnormal behaviors within allowable range. Finally, it has confirmed that the thresholds by the proposed method is detectable the abnormal behavior of real-time measuring data from SHMS.

Estimation of Variability of Soil Properties and Its Application to Geotechnical Engineering Design (지반정수의 변동성 추정 및 결과의 활용)

  • Kim, Dong-Hee;Kim, Min-Tae;Lee, Chang-Ho;Lee, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.12
    • /
    • pp.71-79
    • /
    • 2010
  • The reliable evaluation of the coefficient of variation (COV) of soil properties is required for the determination of adequate design values and the application of a probabilistic method for the design of geotechnical structures. In this paper, the applicability of methods for estimating the standard deviation, such as the. Three-Sigma Rule and a statistical method, is evaluated by using site investigation data of the Songdo area. It is found that the Three-Sigma Rule provides similar results to those of a statistical method when using $N_{\sigma}$=6 for the property with small variability and $N_{\sigma}$=4.2~5.3 for the property with large variability. It is also observed that, for the undrained shear strength that has an increasing trend with depth, a $N_{\sigma}$ value of 4 is adequate for the evaluation of the variability by the Three-Sigma Rule. The COVs of soil properties determined in this paper could be used in the estimation of the confidence interval and characteristic values of soil properties.

Development of a Probabilistic Joint Opening Model using the LTPP Data (LTPP Data를 이용한 확률론적 줄눈폭 예측 모델 개발)

  • Lee, Seung Woo;Chon, Sung Jae;Jeong, Jin Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4D
    • /
    • pp.593-600
    • /
    • 2006
  • Joint opening of jointed concrete pavement is caused by change in temperature and humidity of adjoined slab. The magnitude of joint opening influences on the load-transfer-efficiency and the behavior of sealant. If temperature or humidity decreases, joint opening increases. Generally maximum joint opening of a given joint is predicted by using AASHTO equation. While different magnitudes of joint opening at the individual joints have been observed in a given pavement section, AASHTO equation is limited to predict average joint opening in a given pavement section. Therefore the AASHTO equation may underestimate maximum joint for the half of joint in a given pavement section. Joints showing larger opening than the designed may experience early joint sealant failure, early faulting. Also unexpected spalling may be followed due to invasion of fine aggregate into the joints after sealant pop-off. In this study, the variation of the joint opening in a given pavement section was investigated based on the LTPP SMP data. Factors affecting on the variation are explored. Finally a probabilistic joint opening model is developed. This model can account for the reliability of the magnitude of joint opening so that the designer can select the ratio of underestimated joint opening.

Probabilistic Analysis using Economical Evaluation for Shale Gas Development (셰일가스 개발 시 확률론적 분석 기법을 이용한 경제성 평가)

  • Moon, Young-Jun;Moon, Seo-Yoon;Gil, Seong-Min;Shin, Hyo-Jin;Lim, Jong-Se
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.2
    • /
    • pp.21-28
    • /
    • 2018
  • In recent years, payability of shale gas production has worsened due to oil and gas price declines resulting from sharply increasing shale gas production. Reliable economic evaluation in shale gas development has become important. In this study, Monte Carlo simulation of probabilistic analysis technique was applied to analyze the economic feasibility considering the uncertainty involved in shale gas development. For this, the range of major variables is set and a random number is generated to derive the probability distribution of Net Present Value(NPV) and Internal Rate of Return(IRR). Consequently, we estimated the probability that the feasibility of the project is evaluated to be positive when developing shale gas in the study area. In addition, sensitivity analysis of major parameters affecting economic efficiency in shale gas development was carried out, and the effect of major variables in economic evaluation for commercial production was identified. In the future, this study could be used to make decision for shale gas production by presenting the range of variation of economic index and probability value.

Probabilistic Analysis for Rock Slope Stability Due to Weathering Process (풍화작용에 따른 암반사면 안정성의 확률론적 해석)

  • Park, Hyuck-Jin;Woo, Ik;Um, Jeong-Gi
    • Economic and Environmental Geology
    • /
    • v.42 no.4
    • /
    • pp.357-366
    • /
    • 2009
  • Since weathering weakens the rock fabric and exaggerates any structural weakness, it affects mechanical properties as well as physical and chemical properties of rock. Weathering leads to a decrease in density, strength, friction angle and cohesion, and subsequently it affects negatively on the stability of rock slope. The purpose of the study is to investigate the changes of the rock slope stability caused by discontinuities which have different weathering grades. For that, the discontinuity samples which are divided into two different weathering grades are obtained from the field and tested their mechanical properties such as JCS, JRC and residual friction angle. In order to evaluate the effects on the stability of slope due to weathering, the deterministic analysis is carried out. That is, the factors of safety for planar failure are calculated for rock masses which have two different weathering grades, such as fresh and weathered rock mass. However, since the JRC and friction angle values are widely scattered and the deterministic analysis cannot consider the variation, the factors of safety cannot represent properly the stability of the rock slope. Therefore, the probabilistic analysis has been used to consider the scattered values. In the deterministic analysis, the factors of safety for the fresh discontinuity and weathered discontinuity are 1.25 and 1.0, respectively. The results indicate the fresh discontinuities are stable for planar failure and the weathered discontinuities are marginally stable. However, the probabilities of failure for the fresh discontinuity and weathered discontinuity are 25.6% and 45.9%, respectively. This shows that both discontinuities are analyzed as unstable in the probabilistic analysis.

Assessment of the Internal Pressure Fragility of the PWR Containment Building Using a Nonlinear Finite Element Analysis (비선형 유한요소 해석을 이용한 PWR 격납건물의 내압 취약도 평가)

  • Hahm, Daegi;Park, Hyung-Kui;Choi, In-Kil
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.2
    • /
    • pp.103-111
    • /
    • 2014
  • In this study, the probabilistic internal pressure fragility analysis was performed by using the non-linear finite element analysis method. The target structure is one of the containment buildings of typical domestic pressurized water reactors(PWRs). The 3-dimensional finite element model of the containment building was developed with considering the large equipment hatches. To consider uncertainties in the material properties and structural capacities, we performed the sensitivity analysis of the ultimate pressure capacity with respect to the variation of four important uncertain parameters. The results of the sensitivity analysis were used to the selection of the probabilistic variables and the determination of their probabilistic parameters. To reflect the present condition of the tendon pre-stressing force, the data of the pre-stressing force acquired from the in-service inspections of tendon forces were used for the determination of the median value. Two failure modes(leak, rupture) were considered and their limit states were defined to assess the internal pressure fragility of target containment building. The internal pressure fragilities for each failure mode were evaluated in terms of median internal pressure capacity, high confidence low probability of failure(HCLPF) capacity, and fragility curves with respect to the confidence levels. The HCLPF capacity was 115.9 psig for leak failure mode, and 125.0 psig for rupture failure mode.

Statistical Distribution of Fatigue Life of Composite Materials for Small Wind-Turbine Blades (소형풍력발전 블레이드용 복합재료의 피로수명 분포에 대한 확률론적 평가)

  • Kang, Ki-Weon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.10
    • /
    • pp.1281-1289
    • /
    • 2011
  • This paper deals with several statistical distribution functions for the analysis of fatigue life data of composite laminates for small wind-turbine blades. A series of tensile tests was performed on triaxial glass/epoxy laminates for loading directions of $0^{\circ}$, $45^{\circ}$, and $90^{\circ}$. Then, fatigue tests were carried out to determine the fatigue life at the aforementioned loading directions and the fatigue stresses at four levels. Two-parameter Weibull, three-parameter Weibull, normal, and log-normal distributions were used to fit the fatigue life data of the triaxial composite laminates. The three-parameter Weibull distribution most accurately described the fatigue life data measured experimentally for all the cases considered. Furthermore, the variation of fatigue life was simultaneously affected by the loading direction and fatigue stress level.

A Method to Improve the Performance of Adaboost Algorithm by Using Mixed Weak Classifier (혼합 약한 분류기를 이용한 AdaBoost 알고리즘의 성능 개선 방법)

  • Kim, Jeong-Hyun;Teng, Zhu;Kim, Jin-Young;Kang, Dong-Joong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.5
    • /
    • pp.457-464
    • /
    • 2009
  • The weak classifier of AdaBoost algorithm is a central classification element that uses a single criterion separating positive and negative learning candidates. Finding the best criterion to separate two feature distributions influences learning capacity of the algorithm. A common way to classify the distributions is to use the mean value of the features. However, positive and negative distributions of Haar-like feature as an image descriptor are hard to classify by a single threshold. The poor classification ability of the single threshold also increases the number of boosting operations, and finally results in a poor classifier. This paper proposes a weak classifier that uses multiple criterions by adding a probabilistic criterion of the positive candidate distribution with the conventional mean classifier: the positive distribution has low variation and the values are closer to the mean while the negative distribution has large variation and values are widely spread. The difference in the variance for the positive and negative distributions is used as an additional criterion. In the learning procedure, we use a new classifier that provides a better classifier between them by selective switching between the mean and standard deviation. We call this new type of combined classifier the "Mixed Weak Classifier". The proposed weak classifier is more robust than the mean classifier alone and decreases the number of boosting operations to be converged.