• Title/Summary/Keyword: Probabilistic damage

Search Result 291, Processing Time 0.026 seconds

Seismic performance assessment of R.C. bridge piers designed with the Algerian seismic bridges regulation

  • Kehila, Fouad;Kibboua, Abderrahmane;Bechtoula, Hakim;Remki, Mustapha
    • Earthquakes and Structures
    • /
    • v.15 no.6
    • /
    • pp.701-713
    • /
    • 2018
  • Many bridges in Algeria were constructed without taking into account the seismic effect in the design. The implantation of a new regulation code RPOA-2008 requires a higher reinforcement ratio than with the seismic coefficient method, which is a common feature of the existing bridges. For better perception of the performance bridge piers and evaluation of the risk assessment of existing bridges, fragility analysis is an interesting tool to assess the vulnerability study of these structures. This paper presents a comparative performance of bridge piers designed with the seismic coefficient method and the new RPOA-2008. The performances of the designed bridge piers are assessed using thirty ground motion records and incremental dynamic analysis. Fragility curves for the bridge piers are plotted using probabilistic seismic demand model to perform the seismic vulnerability analysis. The impact of changing the reinforcement strength on the seismic behavior of the designed bridge piers is checked by fragility analysis. The fragility results reveal that the probability of damage with the RPOA-2008 is less and perform well comparing to the conventional design pier.

A New Approach to Selection of Inspection Items using Risk Insight of Probabilistic Safety Assessment for Nuclear Power Plants

  • Park, Younwon;Kim, Hyungjin;Lim, Jihan;Choi, Seongsoo
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.14 no.2
    • /
    • pp.49-58
    • /
    • 2018
  • The regulatory periodic inspection program (PSI) conducted at every overhaul period is the most important process for confirming the safety of nuclear power plants. The PSI for operating nuclear power plants in Korea mainly consist of component level performance check that had been developed based on deterministic approach putting the same degree of importance to all the inspection items. This inspection methodology is likely to be effective for preoperational inspection. However, once the plant is put into service, the PSI must be focused on whether to minimize the risk of accident using defense-in-depth concept and risk insight. The incorporation of defense-in-depth concept and risk insight into the deterministic based safety inspection has not been well studied so far. In this study, two track approaches are proposed to make sure that core damage be avoided: one is to secure success path and the other to block the failure path in a specific event tree of PSA. The investigation shows how to select safety important components and how to set up inspection group to ensure that core damage would not occur for a given initiating event, which results in strengthening defense-in-depth level 3.

Stochastic Fatigue Life Assesment based on Bayesian-inference (베이지언 추론에 기반한 확률론적 피로수명 평가)

  • Park, Myong-Jin;Kim, Yooil
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.2
    • /
    • pp.161-167
    • /
    • 2019
  • In general, fatigue analysis is performed by using deterministic model to estimate the optimal parameters. However, the deterministic model is difficult to clearly describe the physical phenomena of fatigue failure that contains many uncertainty factors. With regard to this, efforts have been made in this research to compare with the deterministic model and the stochastic models. Firstly, One deterministic S-N curve was derived from ordinary least squares technique and two P-S-N curves were estimated through Bayesian-linear regression model and Markov-Chain Monte Carlo simulation. Secondly, the distribution of Long-term fatigue damage and fatigue life were predicted by using the parameters obtained from the three methodologies and the long-term stress distribution.

Effects of curvature radius on vulnerability of curved bridges subjected to near and far-field strong ground motions

  • Naseri, Ali;Roshan, Alireza MirzaGoltabar;Pahlavan, Hossein;Amiri, Gholamreza Ghodrati
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.4
    • /
    • pp.367-392
    • /
    • 2020
  • The specific characteristics of near-field earthquake records can lead to different dynamic responses of bridges compared to far-field records. However, the effect of near-field strong ground motion has often been neglected in the seismic performance assessment of the bridges. Furthermore, damage to horizontally curved multi-frame RC box-girder bridges in the past earthquakes has intensified the potential of seismic vulnerability of these structures due to their distinctive dynamic behavior. Based on the nonlinear time history analyses in OpenSEES, this article, assesses the effects of near-field versus far-field earthquakes on the seismic performance of horizontally curved multi-frame RC box-girder bridges by accounting the vertical component of the earthquake records. Analytical seismic fragility curves have been derived thru considering uncertainties in the earthquake records, material and geometric properties of bridges. The findings indicate that near-field effects reasonably increase the seismic vulnerability in this bridge sub-class. The results pave the way for future regional risk assessments regarding the importance of either including or excluding near-field effects on the seismic performance of horizontally curved bridges.

Optimization of Sky-Bridge location at coupled high-rise buildings considering seismic vulnerability functions

  • Arada, Ahmad Housam;Ozturk, Baki;Kassem, Moustafa Moufid;Nazri, Fadzli Mohamed;Tan, Chee Ghuan
    • Structural Engineering and Mechanics
    • /
    • v.82 no.3
    • /
    • pp.385-400
    • /
    • 2022
  • Sky-bridges between adjacent buildings can enhance lateral stiffness and limit the impact of lateral forces. This study analysed the structural capabilities and dynamic performances of sky-bridge-coupled buildings under various sets of ground motions. Finite Element (FE) analyses were carried out with the link being iteratively repositioned along the full height of the structures. Incremental dynamic analysis (IDA) and probabilistic damage distribution were also applied. The results indicated that the establishment of sky-bridges caused a slight change in the natural frequency and mode shapes. The sky-bridge system was shown to be efficient in controlling displacement and Inter-Storey Drift Ratio (%ISDR) and reducing the probability of damage in the higher floors. The most efficient location of the sky-bridge, for improving its rigidity, was found to be at 88% of the building height. Finally, the effects of two types of materials (steel and concrete) and end conditions (hinged and fixed) were studied. The outcomes showed that coupled buildings with a sky-bridge made of steel with hinged connection could withstand ground motions longer than those made of concrete with fixed connection.

Evaluating the Application of Portable Safety Equipment in Nuclear Power Plants using Multi-unit PSA (다수기 PSA 기반 원자력 발전소 이동형 안전 설비 활용성 평가)

  • Jae Young Yoon;Ho-Gon Lim;Jong Woo Park
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.3
    • /
    • pp.110-120
    • /
    • 2023
  • Following the Fukushima accident, portable equipment employed as accident mitigating systems have been installed and operated to reduce core damage and large early release frequencies. In addition, the establishment of an accident management strategy has gained importance. This study investigated the current status of portable equipment including the international portable equipment FLEX (diverse and flexible coping strategies), and domestic portable equipment multi-barrier accident coping strategy (MACST). Research on optimal utilization of MACST remains insufficient. As a preliminary study for establishing an optimal strategy, sensitivity studies were conducted to facilitate the priority of use on portable equipment, number of portable equipment, and dependency of operator actions based on a multi-unit probabilistic safety assessment model. The results revealed the conditions that reduced the multi-unit and site conditional core damage probabilities, indicating the optimal strategy of MACST. The results of this study can be used as a reference for establishing an optimal strategy that utilizes domestic safety equipment in the future.

Fragility-based rapid earthquake loss assessment of precast RC buildings in the Marmara region

  • Ali Yesilyurt;Oguzhan Cetindemir;Seyhan O. Akcan;Abdullah C. Zulfikar
    • Structural Engineering and Mechanics
    • /
    • v.88 no.1
    • /
    • pp.13-23
    • /
    • 2023
  • Seismic risk assessment studies are one of the most crucial instruments for mitigating casualties and economic losses. This work utilizes fragility curves to evaluate the seismic risk of single-story precast buildings, which are generally favored in Marmara's organized industrial zones. First, the precast building stock in the region has been categorized into nine sub-classes. Then, seven locations in the Marmara region with a high concentration of industrial activities are considered. Probabilistic seismic hazard assessments were conducted for both the soil-dependent and soil-independent scenarios. Subsequently, damage analysis was performed based on the structural capacity and mean fragility curves. Considering four different consequence models, 630 sub-class-specific loss curves for buildings were obtained. In the current study, it has been determined that the consequence model has a significant impact on the loss curves, hence, average loss curves were computed for each case investigated. In light of the acquired results, it was found that the loss ratio values obtained at different locations within the same region show significant variation. In addition, it was observed that the structural damage states change from serviceable to repairable or repairable to unrepairable. Within the scope of the study, 126 average loss functions were presented that could be easily used by non-experts in earthquake engineering, regardless of structural analysis. These functions, which offer loss ratios for varying hazard levels, are valuable outputs that allow preliminary risk assessment in the region and yield sensible outcomes for insurance activities.

Fragility Analysis Method Based on Seismic Performance of Bridge Structure considering Earthquake Frequencies (지진 진동수에 따른 교량의 내진성능기반 취약도 해석 방법)

  • Lee, Dae-Hyoung;Chung, Young-Soo;Yang, Dong-Wook
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.2
    • /
    • pp.187-197
    • /
    • 2009
  • This paper presents a systematic approach for estimating fragility curves and damage probability matrices for different frequencies. Fragility curves and damage probability indicate the probabilities that a structure will sustain different degrees of damage at different ground motion levels. The seismic damages are to achieved by probabilistic evaluation because of uncertainty of earthquakes. In contrast to previous approaches, this paper presents a method that is based on nonlinear dynamic analysis of the structure using empirical data. This paper presents the probability of damage as a function of peak ground acceleration and estimates the probability of five damage levels for prestressed concrete (PSC) bridge pier subjected to given ground acceleration. At each level, 100 artificial earthquake motions were generated in terms of soil conditions, and nonlinear time domain analyses was performed for the damage states of PSC bridge pier structures. These damage states are described by displacement ductility resulting from seismic performance based on existing research results. Using the damage states and ground motion parameters, five fragility curves for PSC bridge pier with five types of dominant frequencies were constructed assuming a log-normal distribution. The effect of dominant frequences was found to be significant on fragility curves.

Probabilistic Assesment of the Effects of Vapor Cloud Explosion on a Human Body (증기운 폭발이 인체에 미치는 영향에 대한 확률론적 평가)

  • Yoon, Yong-Kyun;Ju, Eun-Hye
    • Tunnel and Underground Space
    • /
    • v.31 no.1
    • /
    • pp.52-65
    • /
    • 2021
  • In this study, authors analyzed the vapor cloud explosion induced by propane leak at the PEMIX Terminal, which is the propane storage facility outside of Mexico City. TNT equivalence mass for the leaked 4750 kg propane was estimated to be 9398 kg. Blast parameters such as peak overpressure, positive phase duration, and impact at 40-400 (m) away from the center of the explosion were calculated by applying TNT Equivalency Method and Multi-Energy Method. The probability of damage due to lung damage, eardrum rupture, head impact, and whole-body displacement impact by applying the probit function obtained using blast parameters was evaluated. The peak overpressure obtained using Multi-Energy Method was found to be greater than the peak overpressure obtained by applying the TNT Equivalency Method at all distances considered, but it was evaluated that there was no significant difference from the points above 200 m. The peak overpressure obtained by Multi-Energy Method was computed to assess the extent of damage to the structure, and it was shown that structures within 100 m of the explosion center would collapse completely, and that the glasses of the structures 400 m away would be almost broken. The probability of death due to lung damage was shown to vary depending on a human body's position located in the propagating direction of shock wave, and if there is a reflecting surface in the immediate surroundings of a human body, the probability of death was estimated to be the greatest. The impact of shock wave on lung damage, eardrum rupture, head impact, and whole-body displacement impact was evaluated and found to affect whole-body impact < lung damage < eardrum rupture

Analysis of Common Cause Failure Using Two-Step Expectation and Maximization Algorithm (2단계 EM 알고리즘을 이용한 공통원인 고장 분석)

  • Baek Jang Hyun;Seo Jae Young;Na Man Gyun
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.30 no.2
    • /
    • pp.63-71
    • /
    • 2005
  • In the field of nuclear reactor safety study, common cause failures (CCFs) became significant contributors to system failure probability and core damage frequency in most Probabilistic risk assessments. However, it is hard to estimate the reliability of such a system, because of the dependency of components caused by CCFs. In order to analyze the system, we propose an analytic method that can find the parameters with lack of raw data. This study adopts the shock model in which the failure probability increases as the shock is cumulated. We use two-step Expectation and Maximization (EM) algorithm to find the unknown parameters. In order to verify the analysis result, we perform the simulation under same environment. This approach might be helpful to build the defensive strategy for the CCFs.