• Title/Summary/Keyword: Probabilistic Sensitivity

Search Result 218, Processing Time 0.028 seconds

A Study on Probabilistic Reliability Evaluation of KEPCO System using TRELSS (TRELSS를 이용한 우리나라 전력계통의 확률론적 신뢰도 평가에 관한 연구)

  • Jeon, Dong-Hoon;Choi, Jae-Seok;Kim, Kern-Joong
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.11
    • /
    • pp.453-462
    • /
    • 2006
  • This paper evaluates the reliability of KEPCO system using TRELSS, which is a probabilistic reliability evaluation program for large-scaled power system. In order to reflect the characteristic of KEPCO system, the sensitivity of reliability indices such as LOLP, EDLC, EENS and Energy Curtailment for variations of TRELSS parameter and input data was analyzed. Additionally, probabilistic reliability of KEPCO system reflecting sensitivity analysis results was systematically evaluated and simulated. Finally, maximum acceptable FOR of KEPCO system to satisfy reliability criterion, which meet in process of establishing the basic plan for long-term electricity supply and demand is suggested.

Reliability Design using Asymptotic Variance of Inverse Cumulative Distribution Function (분위수의 점근적 분산을 이용한 신뢰성 설계)

  • Cho H.J.;Baek S.H.;Hong S.H.;Cho S.S.;Joo W.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1682-1685
    • /
    • 2005
  • System algorithms estimated by deterministic input may occur the error between predicted and actual output. Especially, actual system can't predict the exact outputs due to uncertainty and tolerance of input parameters. A single output to a set of inputs has a limited value without the variation. Hence, we should consider various scatters caused by the load assessment, material characteristics, stress analysis and manufacturing methods in order to perform the robust design or estimate the reliability of structure. The system design with uncertainty should perform the probabilistic structural optimization with the statistical response and the reliability. This method calculated the probability distributions of the characteristics such as stress by combining stress analysis, response surface methodology and Monte-Carlo Method and got the probabilistic sensitivity. The sensitivity of structural response with respect to inconstant design variables was estimated by fracture probability. Therefore, this paper proposed the probabilistic reliability design method for fracture of uncorved freight end beam and the design criteria by fracture probability.

  • PDF

The effect of sensitive and non-sensitive parameters on DCGL in probability analysis for decommissioning of nuclear facilities

  • Hyung-Woo Seo;Hyein Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3559-3570
    • /
    • 2023
  • In the decommissioning of nuclear facilities, Derived Concentration Guideline Level (DCGL) derivation is necessary for the release of the facility after the site remediation, which also needs to be implemented in the stage of establishing a decommissioning planning. In order to derive DCGL, the dose assessment for the receptors can be conducted from residual radioactivity by using RESRAD code. When performing sensitivity analysis on probabilistic parameters, secondary evaluation is performed by assigning a single value for parameters classified as sensitive. However, several options may arise in the handling of nonsensitive parameters. Therefore, we compared the results of the first execution of RESRAD applying probabilistic parameters for each scenario with the results of the second execution applying a single value to sensitive parameters among the probabilistic parameters. In addition, we analyzed the effect of setting options for non-sensitive parameters. As a result, the effect on DCGL were different depending on the application scenario, the target radionuclides, and the input parameter selections. In terms of the overall evaluation period, the DCGL graph of the default option was generally shown as the most conservative except for some radionuclides. However, it will not necessarily be given priority in the aspect of the need to reflect site characteristics. The reason for selecting a probabilistic parameter is the availability of the parameter and the uncertainty of applying a single value. Therefore, as an alternative, it can be consistently applied to distribution as an option for non-sensitive parameters after sensitivity analysis.

UNCERTAINTY AND SENSITIVITY STUDIES WITH THE PROBABILISTIC ACCIDENT CONSEQUENCE ASSESSMENT CODE OSCAAR

  • HOMMA TOSHIMITSU;TOMITA KENICHI;HATO SHINJI
    • Nuclear Engineering and Technology
    • /
    • v.37 no.3
    • /
    • pp.245-258
    • /
    • 2005
  • This paper addresses two types of uncertainty: stochastic uncertainty and subjective uncertainty in probabilistic accident consequence assessments. The off-site consequence assessment code OSCAAR has been applied to uncertainty and sensitivity analyses on the individual risks of early fatality and latent cancer fatality in the population outside the plant boundary due to a severe accident. A new stratified meteorological sampling scheme was successfully implemented into the trajectory model for atmospheric dispersion and the statistical variability of the probability distributions of the consequence was examined. A total of 65 uncertain input parameters was considered and 128 runs of OSCAAR with 144 meteorological sequences were performed in the parameter uncertainty analysis. The study provided the range of uncertainty for the expected values of individual risks of early and latent cancer fatality close to the site. In the sensitivity analyses, the correlation/regression measures were useful for identifying those input parameters whose uncertainty makes an important contribution to the overall uncertainty for the consequence. This could provide valuable insights into areas for further research aiming at reducing the uncertainties.

Probabilistic structural damage detection approaches based on structural dynamic response moments

  • Lei, Ying;Yang, Ning;Xia, Dandan
    • Smart Structures and Systems
    • /
    • v.20 no.2
    • /
    • pp.207-217
    • /
    • 2017
  • Because of the inevitable uncertainties such as structural parameters, external excitations and measurement noises, the effects of uncertainties should be taken into consideration in structural damage detection. In this paper, two probabilistic structural damage detection approaches are proposed to account for the underlying uncertainties in structural parameters and external excitation. The first approach adopts the statistical moment-based structural damage detection (SMBDD) algorithm together with the sensitivity analysis of the damage vector to the uncertain parameters. The approach takes the advantage of the strength SMBDD, so it is robust to measurement noise. However, it requests the number of measured responses is not less than that of unknown structural parameters. To reduce the number of measurements requested by the SMBDD algorithm, another probabilistic structural damage detection approach is proposed. It is based on the integration of structural damage detection using temporal moments in each time segment of measured response time history with the sensitivity analysis of the damage vector to the uncertain parameters. In both approaches, probability distribution of damage vector is estimated from those of uncertain parameters based on stochastic finite element model updating and probabilistic propagation. By comparing the two probability distribution characteristics for the undamaged and damaged models, probability of damage existence and damage extent at structural element level can be detected. Some numerical examples are used to demonstrate the performances of the two proposed approaches, respectively.

Probabilistic seismic assessment of structures considering soil uncertainties

  • Hamidpour, Sara;Soltani, Masoud;Shabdin, Mojtaba
    • Earthquakes and Structures
    • /
    • v.12 no.2
    • /
    • pp.165-175
    • /
    • 2017
  • This paper studies soil properties uncertainty and its implementation in the seismic response evaluation of structures. For this, response sensitivity of two 4- and 12-story RC shear walls to the soil properties uncertainty by considering soil structure interaction (SSI) effects is investigated. Beam on Nonlinear Winkler Foundation (BNWF) model is used for shallow foundation modeling and the uncertainty of soil properties is expanded to the foundation stiffness and strength parameters variability. Monte Carlo (MC) simulation technique is employed for probabilistic evaluations. By investigating the probabilistic evaluation results it's observed that as the soil and foundation become stiffer, the soil uncertainty is found to be less important in influencing the response variability. On the other hand, the soil uncertainty becomes more important as the foundation-structure system is expected to experience nonlinear behavior to more sever degree. Since full This paper studies soil properties uncertainty and its implementation in the seismic response evaluation of structures. For this, response sensitivity of two 4- and 12-story RC shear walls to the soil properties uncertainty by considering soil structure interaction (SSI) effects is investigated. Beam on Nonlinear Winkler Foundation (BNWF) model is used for shallow foundation modeling and the uncertainty of soil properties is expanded to the foundation stiffness and strength parameters variability. Monte Carlo (MC) simulation technique is employed for probabilistic evaluations. By investigating the probabilistic evaluation results it's observed that as the soil and foundation become stiffer, the soil uncertainty is found to be less important in influencing the response variability. On the other hand, the soil uncertainty becomes more important as the foundation-structure system is expected to experience nonlinear behavior to more sever degree. Since full probabilistic analysis methods like MC commonly are very time consuming, the feasibility of simple approximate methods' application including First Order Second Moment (FOSM) method and ASCE41 proposed approach for the soil uncertainty considerations is investigated. By comparing the results of the approximate methods with the results obtained from MC, it's observed that the results of both FOSM and ASCE41 methods are in good agreement with the results of MC simulation technique and they show acceptable accuracy in predicting the response variability.

Probabilistic Design under Uncertainty using Response Surface Methodology and Pearson System (반응표면방법론과 피어슨 시스템을 이용한 불확실성하의 확률적 설계)

  • Baek Seok-Heum;Cho Soek-Swoo;Joo Won-Sik
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.275-282
    • /
    • 2006
  • System algorithms estimated by deterministic input may occur the error between predicted and actual output. Especially, actual system can't predict the exact outputs due to uncertainty and tolernce of input parameters. A single output to a set of inputs has a limited value without the variation. Hence, we should consider various scatters caused by the load assessment, material characteristics, stress analysis and manufacturing methods in order to perform the robust design or etimate the reliability of structure. The system design with uncertainty should perform the probabilistic structural optimization with the statistical response and the reliability. This method calculated the probability distributions of the characteristics such as stress by combining stress analysis, response surface methodology and Monte Carlo simulation and got the probabilistic sensitivity. The sensitivity of structural response with respect to in constant design variables was estimated by fracture probability. Therefore, this paper proposed the probabilistic reliability design method for fracture of uncorved freight end beam and the design criteria by fracture probability.

  • PDF

NUCLEAR FUEL CYCLE COST ESTIMATION AND SENSITIVITY ANALYSIS OF UNIT COSTS ON THE BASIS OF AN EQUILIBRIUM MODEL

  • KIM, S.K.;KO, W.I.;YOUN, S.R.;GAO, R.X.
    • Nuclear Engineering and Technology
    • /
    • v.47 no.3
    • /
    • pp.306-314
    • /
    • 2015
  • This paper examines the difference in the value of the nuclear fuel cycle cost calculated by the deterministic and probabilistic methods on the basis of an equilibrium model. Calculating using the deterministic method, the direct disposal cost and Pyro-SFR (sodium-cooled fast reactor) nuclear fuel cycle cost, including the reactor cost, were found to be 66.41 mills/kWh and 77.82 mills/kWh, respectively (1 mill = one thousand of a dollar, i.e., $10^{-3}$ $). This is because the cost of SFR is considerably expensive. Calculating again using the probabilistic method, however, the direct disposal cost and Pyro-SFR nuclear fuel cycle cost, excluding the reactor cost, were found be 7.47 mills/kWh and 6.40 mills/kWh, respectively, on the basis of the most likely value. This is because the nuclear fuel cycle cost is significantly affected by the standard deviation and the mean of the unit cost that includes uncertainty. Thus, it is judged that not only the deterministic method, but also the probabilistic method, would also be necessary to evaluate the nuclear fuel cycle cost. By analyzing the sensitivity of the unit cost in each phase of the nuclear fuel cycle, it was found that the uranium unit price is the most influential factor in determining nuclear fuel cycle costs.

English vowel production conditioned by probabilistic accessibility of words: A comparison between L1 and L2 speakers

  • Jonny Jungyun Kim;Mijung Lee
    • Phonetics and Speech Sciences
    • /
    • v.15 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • This study investigated the influences of probabilistic accessibility of the word being produced - as determined by its usage frequency and neighborhood density - on native and high-proficiency L2 speakers' realization of six English monophthong vowels. The native group hyperarticulated the vowels over an expanded acoustic space when the vowel occurred in words with low frequency and high density, supporting the claim that vowel forms are modified in accordance with the probabilistic accessibility of words. However, temporal expansion occurred in words with greater accessibility (i.e., with high frequency and low density) as an effect of low phonotactic probability in low-density words, particularly in attended speech. This suggests that temporal modification in the opposite direction may be part of the phonetic characteristics that are enhanced in communicatively driven focus realization. Conversely, none of these spectral and temporal patterns were found in the L2 group, thereby indicating that even the high-proficiency L2 speakers may not have developed experience-based sensitivity to the modulation of sub-categorical phonetic details indexed with word-level probabilistic information. The results are discussed with respect to how phonological representations are shaped in a word-specific manner for the sake of communicatively driven lexical intelligibility, and what factors may contribute to the lack of native-like sensitivity in L2 speech.

Sensitivity Analyses for Failure Probabilities of the OPR1000 Reactor Vessel Under Pressurized Thermal Shock (가압열충격에 의한 OPR1000 원자로용기의 파손확률 민감도 해석)

  • Oh, Changsik;Jhung, Myung Jo;Choi, Youngin
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.15 no.2
    • /
    • pp.40-49
    • /
    • 2019
  • In this paper, failure probabilities of the OPR1000 reactor vessel under pressurized thermal shock (PTS) were estimated using the probabilistic fracture mechanics code, R-PIE. Input variables of initial crack distribution, crack size, copper contents, and upper shelf toughness were selected for the sensitivity analyses. A wide range of the input data were considered. Through-wall cracking frequencies determined by the product of the vessel failure probability and the corresponding occurrence frequency of the transient were also compared to the acceptance criterion. The results showed that transient history had the most significant impact on the vessel failure probability. Moreover, conservative assumptions resulted in extremely high through-wall cracking frequencies.