• Title/Summary/Keyword: Probabilistic Method

Search Result 1,545, Processing Time 0.029 seconds

Probabilistic bearing capacity of strip footing on reinforced anisotropic soil slope

  • Halder, Koushik;Chakraborty, Debarghya
    • Geomechanics and Engineering
    • /
    • v.23 no.1
    • /
    • pp.15-30
    • /
    • 2020
  • The probabilistic bearing capacity of a strip footing placed on the edge of a purely cohesive reinforced soil slope is computed by combining lower bound finite element limit analysis technique with random field method and Monte Carlo simulation technique. To simulate actual field condition, anisotropic random field model of undrained soil shear strength is generated by using the Cholesky-Decomposition method. With the inclusion of a single layer of reinforcement, dimensionless bearing capacity factor, N always increases in both deterministic and probabilistic analysis. As the coefficient of variation of the undrained soil shear strength increases, the mean N value in both unreinforced and reinforced slopes reduces for particular values of correlation length in horizontal and vertical directions. For smaller correlation lengths, the mean N value of unreinforced and reinforced slopes is always lower than the deterministic solutions. However, with the increment in the correlation lengths, this difference reduces and at a higher correlation length, both the deterministic and probabilistic mean values become almost equal. Providing reinforcement under footing subjected to eccentric load is found to be an efficient solution. However, both the deterministic and probabilistic bearing capacity for unreinforced and reinforced slopes reduces with the consideration of loading eccentricity.

A New Probabilistic Generation Simulation Considering Hydro, Pumped-Storage Plants and Multi-Model (수력,양수 및 다중모델을 고려한 새로운 확률론적 발전시뮬레이션)

  • 송길영;최재석
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.6
    • /
    • pp.551-561
    • /
    • 1991
  • The probabilistic generation simulation plays a key role in power system expansion and operational planning especially for the calculation of expected energy, loss of load probaility and unserved energy expected. However, it is crucial to develop a probabilistic generation simulation algorithm which gives sufficiently precise results within a reasonable computation time. In a previous paper, we have proposed an efficent method using Fast Hartley Transform in convolution process for considering the thermal and nuclear units. In this paper, a method considering the scheduling of pumped-storage plants and hydro plants with energy constraint is proposed. The method also adopts FHT techniques. We improve the model to include multi-state and multi-block generation. The method has been applied for a real size model system.

  • PDF

Probabilistic Background Subtraction in a Video-based Recognition System

  • Lee, Hee-Sung;Hong, Sung-Jun;Kim, Eun-Tai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.4
    • /
    • pp.782-804
    • /
    • 2011
  • In video-based recognition systems, stationary cameras are used to monitor an area of interest. These systems focus on a segmentation of the foreground in the video stream and the recognition of the events occurring in that area. The usual approach to discriminating the foreground from the video sequence is background subtraction. This paper presents a novel background subtraction method based on a probabilistic approach. We represent the posterior probability of the foreground based on the current image and all past images and derive an updated method. Furthermore, we present an efficient fusion method for the color and edge information in order to overcome the difficulties of existing background subtraction methods that use only color information. The suggested method is applied to synthetic data and real video streams, and its robust performance is demonstrated through experimentation.

Probabilistic Analysis of Vertical Drains Using Spreadsheet (Spreadsheet를 이용한 연직배수공법의 확률론적 해석)

  • Kim, Seong-Pil;Heo, Joon;Yoon, Chang-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.1024-1029
    • /
    • 2010
  • The conventional factor of safety as used in geotechnical engineering does not reflect the degree of uncertainty of the relevant parameters. Then in the geotechnical engineering, there have been efforts to reflect the uncertainties of the geotechnical properties through probabilistic analysis. In this study, a practical method for calculation the second moment reliability index using the optimization tool of a spreadsheet software is introduced. And this methodology was proposed by Low, B. K.(1996). The method is based on the perspective of an ellipsoid that just touches the failure surface in the original space of the variables. The method is applied to vertical drains(PVD) and compared with th result of Monte Carlo Simulation method.

  • PDF

Development of Calculation Technique for Probabilistic Functions Used in the Reliability Analysis of Agricultural Structures (농업용구조물의 신뢰성해석에 이용되는 확률함수의 연산방법 개발)

  • 곽영철;이경재
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.2
    • /
    • pp.95-102
    • /
    • 1997
  • The technique of the calculation for probabilistic functions used in the reliability analysis of agricultural structures is proposed in this paper for adapting the standardization method using a numerical intergration. The proposed standardization method deals with the structures whose deviations of material properties and loads are large such that the deviation range from 20% to 70%. The results computed by the proposed method are compared with those obtained by the Monte Carlo Simulation. Deterministic values such as deflection, stress, obtained by conventional structural analysis can be directly changed to probabilistic distributions by the proposed method.

  • PDF

Probabilistic shear-lag analysis of structures using Systematic RSM

  • Cheng, Jin;Cai, C.S.;Xiao, Ru-Cheng
    • Structural Engineering and Mechanics
    • /
    • v.21 no.5
    • /
    • pp.507-518
    • /
    • 2005
  • In the shear-lag analysis of structures deterministic procedure is insufficient to provide complete information. Probabilistic analysis is a holistic approach for analyzing shear-lag effects considering uncertainties in structural parameters. This paper proposes an efficient and accurate algorithm to analyze shear-lag effects of structures with parameter uncertainties. The proposed algorithm integrated the advantages of the response surface method (RSM), finite element method (FEM) and Monte Carlo simulation (MCS). Uncertainties in the structural parameters can be taken into account in this algorithm. The algorithm is verified using independently generated finite element data. The proposed algorithm is then used to analyze the shear-lag effects of a simply supported beam with parameter uncertainties. The results show that the proposed algorithm based on the central composite design is the most promising one in view of its accuracy and efficiency. Finally, a parametric study was conducted to investigate the effect of each of the random variables on the statistical moment of structural stress response.

A method for ultrasound image edge enhancement by using Probabilistic edge map (초음파 진단영상 대조도 개선을 위한 확률 경계 맵을 이용한 연구)

  • Choi, Woo-hyuk;Park, Won-hwan;Park, Sungyun
    • The Journal of the Society of Korean Medicine Diagnostics
    • /
    • v.20 no.1
    • /
    • pp.37-44
    • /
    • 2016
  • Ultrasonic imaging is the most widely modality among modern imaging device for medical diagnosis. Nevertheless, medical ultrasound images suffer from speckle noise and low contrast. In this paper, we propose probabilistic edge map for ultrasound image edge enhancement using automatic alien algorithm. The proposed method used applied speckle reduced ultrasound imaging for edge improvement using sequentially acquired ultrasound imaging. To evaluate the performance of method, the similarity between the reference and edge enhanced image was measured by quantity analysis. The experimental results show that the proposed method considerably improves the image quality with region edge enhancement.

Probabilistic Stability Analysis of Slopes by the Limit Equilibrium Method Considering Spatial Variability of Soil Property (지반물성의 공간적 변동성을 고려한 한계평형법에 의한 확률론적 사면안정 해석)

  • Cho, Sung-Eun;Park, Hyung-Choon
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.12
    • /
    • pp.13-25
    • /
    • 2009
  • In this paper, a numerical procedure of probabilistic slope stability analysis that considers the spatial variability of soil properties is presented. The procedure extends the deterministic analysis based on the limit equilibrium method of slices to a probabilistic approach that accounts for the uncertainties and spatial variation of the soil parameters. Making no a priori assumptions about the critical failure surface like the Random Finite Element Method (RFEM), the approach saves the amount of solution time required to perform the analysis. Two-dimensional random fields are generated based on a Karhunen-Lo$\grave{e}$ve expansion in a fashion consistent with a specified marginal distribution function and an autocorrelation function. A Monte Carlo simulation is then used to determine the statistical response based on the random fields. A series of analyses were performed to verify the application potential of the proposed method and to study the effects of uncertainty caused by the spatial heterogeneity on the stability of slope. The results show that the proposed method can efficiently consider the various failure mechanisms caused by the spatial variability of soil property in the probabilistic slope stability assessment.

A Study on the Pattern Classificatiion of the EMG Signals Using Neural Network and Probabilistic Model (신경회로망과 확률모델을 이용한 근전도신호의 패턴분류에 관한 연구)

  • 장영건;권장우;장원환;장원석;홍성홍
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.28B no.10
    • /
    • pp.831-841
    • /
    • 1991
  • A combined model of probabilistic and MLP(multi layer perceptron) model is proposed for the pattern classification of EMG( electromyogram) signals. The MLP model has a problem of not guaranteeing the global minima of error and different quality of approximations to Bayesian probabilities. The probabilistic model is, however, closely related to the estimation error of model parameters and the fidelity of assumptions. A proper combination of these will reduce the effects of the problems and be robust to input variations. Proposed model is able to get the MAP(maximum a posteriori probability) in the probabilistic model by estimating a priori probability distribution using the MLP model adaptively. This method minimize the error probability of the probabilistic model as long as the realization of the MLP model is optimal, and this is a good combination of the probabilistic model and the MLP model for the usage of MLP model reliability. Simulation results show the benefit of the proposed model compared to use the Mlp and the probabilistic model seperately and the average calculation time fro classification is about 50ms in the case of combined motion using an IBM PC 25 MHz 386model.

  • PDF

A Study to Develop a Practical Probabilistic Slope Stability Analysis Method (실용적인 확률론적 사면안정 해석 기법 개발)

  • 김형배;이승호
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.271-280
    • /
    • 2002
  • A probabilistic approach to identify the effects of uncertainties of soil strength parameters on searching a critical slip surface with the lowest reliability is introduced. In general construction field, it is impossible for the engineer to always gather a variety of statistical information of soil strength parameters for which lots of laboratory and in-situ soil testing are required and to use it with enough statistical knowledge. Thus, in order that the engineer may easily understand the probabilistic concept for the slope stability analysis, this study proposes a combined procedure to incorporate the engineering probabilistic tools into the existing deterministic slope stability analysis methods. Using UTEXAS 3, a slope stability analysis computer program developed by U.S. Army Corps of Engineers (U.S. COE), this study provides the results of this probabilistic slope stability analysis in terms of probability of failure or reliability index. This probabilistic method f3r slope stability analysis appears to yield more comprehensive results of slope reliability than does existing deterministic methods with safety factors alone.